试证:如果 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶正交矩阵,且 [tex=4.214x1.143]84/rQABh/LumI40u5XdLJA==[/tex],则 -1 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的一个特征值。
举一反三
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级正交矩阵,证明:如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数,且[tex=2.643x1.357]2b4bQFAKsSsWrcRvU4LFtQ==[/tex],则1是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的一个特征值.
- 试证:如果 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为奇数阶正交矩阵,且 [tex=3.929x1.214]NovbxKl63Ey/milqTcbe//IQk0fgEelSy0N+iM7c6fc=[/tex]则 1 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的一个特征值。
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵,且[tex=7.5x1.5]c5Cf4pRARaBipYntugL/3mXW9bN1kcCFWtRtdE4s5U7oqYZPlZzeU9EQzsAlBDm6q64C32SDmVrNm3PyP4pHRa8qCmYFCiKr9TZD9wQq4LU=[/tex], 试证: -1 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的一个特征值.
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级正交矩阵,证明:如果[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有特征值,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值是1或[tex=1.286x1.143]Mj6+lbt3rBoas+xQLVX/oA==[/tex].
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是数域[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]上的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵,求证:(1) 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 适合 [tex=2.786x1.429]zLK4b0xfa8l2qud8QMIeoQ==[/tex], 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 必可对角化;(2) 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 适合 [tex=2.714x1.214]+yxb2fEUuHYxLwX2MLViFg==[/tex], 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 必可对角化.