• 2022-06-29
    设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级正交矩阵,证明:如果[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是奇数,且[tex=2.643x1.357]2b4bQFAKsSsWrcRvU4LFtQ==[/tex],则1是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的一个特征值.
  • 提示:[tex=9.786x1.571]5Pr8SDTBAxj5nOoW6cHpzSewCGLFHO/L1Av++zWlMwT1xEiZAmPrnuu7IgLEAKON[/tex][tex=4.929x1.571]CbfD0V+H1O1TZsgM5r4uB3FXBTwJ/tQO21ddw+j+D4OzO2O/GzoZYTUvwJISHnnK[/tex].

    举一反三

    内容

    • 0

      设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵,且[tex=7.5x1.5]c5Cf4pRARaBipYntugL/3mXW9bN1kcCFWtRtdE4s5U7oqYZPlZzeU9EQzsAlBDm6q64C32SDmVrNm3PyP4pHRa8qCmYFCiKr9TZD9wQq4LU=[/tex], 试证: -1 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的一个特征值.

    • 1

      设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 级矩阵,证明[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是反称矩阵当且仅当对任一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维向量 [tex=1.143x1.214]5tXpix/jb7tkCHi6+JV4sA==[/tex] 有 [tex=4.286x1.357]yZS/xggvREXFv3tBWLetFuGoXUxPaaHcVoIpM9CtHhA=[/tex]

    • 2

      求证: 若 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个互不相同的特征值, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征多项式 和极小多项式相等.

    • 3

      设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称阵, 则 未知类型:{'options': ['[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的特征值的绝对值等于1', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0有\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]\xa0个不同的特征值', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的任意\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]\xa0个线性无关的特征向量两两正交', '存在正交矩阵\xa0[tex=0.857x1.0]3dL6VJHKHZnugLK8MQRDDg==[/tex], 使\xa0[tex=2.571x1.143]RvMNxxt784ax6BPwR+vlrx97TAmrzugQcbcsVRgnqt0=[/tex]\xa0为对角矩阵'], 'type': 102}

    • 4

      若[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足[tex=5.714x1.357]gHrEoMXRoYD6ylIB8k+Dmg==[/tex],则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为[input=type:blank,size:4][/input]。