设在[tex=1.857x1.286]Tkxl36++OFZcq15BkOTnmg==[/tex]面内有一分布着质量的曲线弧[tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex],在点[tex=2.214x1.286]S6NgNKNoH80dgKR3db0eeg==[/tex]处它的线密度为[tex=2.857x1.286]o4NdGwqKyionbD984dgRAQ==[/tex],用对弧长的曲线积分分别表达:1) 该曲线弧对[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴、[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]轴的转动惯量[tex=0.929x1.286]ZrjCjoYSYGWJTk65wj74aA==[/tex]和[tex=0.857x1.286]2owJ5lZE4QNITUvByFD0Mg==[/tex];2) 该曲线弧的质心坐标[tex=0.571x1.286]GcARJchxbbiCM4nAf5Dt5g==[/tex]和[tex=0.571x1.286]4UekzWj7holRcG5GvLpPww==[/tex]。
举一反三
- 设在[tex=1.857x1.286]j9TayWzddHzM0PQ/gL6C3Q==[/tex]面内有一分布着质量的曲线弧[tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex],在点[tex=2.214x1.286]S6NgNKNoH80dgKR3db0eeg==[/tex]处它的线密度为[tex=2.857x1.286]o4NdGwqKyionbD984dgRAQ==[/tex],用对弧长的曲线积分分别表达:(1)这曲线弧对[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴、对[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]轴的转动惯量[tex=2.214x1.286]XyrFaxXQbY1IJh/EfuaWVjvauo4VKjdJXnsVavBnb2w=[/tex];(2)这曲线弧的重心坐标[tex=1.571x1.286]G6buJjlYEUEwnDTay7crTgciovjELiaV2vL+l4R5uXQ=[/tex].
- 设在[tex=1.857x1.286]c+Z4Z8NGrrwjZdvrK/yxYw==[/tex]面内有一分布着质量的曲线弧L,在点[tex=2.214x1.286]Cv8pj5T6IBFBezH8urMOfw==[/tex]处它的线密度为[tex=2.857x1.286]HAgr4vvbbRh39nHbtGr1Yw==[/tex]。用对弧长的曲线积分分别表达:(1)这曲线弧对x轴,对y轴的转动惯量[tex=2.214x1.286]0hlnfAqdsj8gXUVV2/uwZg==[/tex](2)这曲线弧的质心坐标[tex=1.571x1.071]rxaJ+U7633dB5xw/8lPdQtGi1SYqW7bm4LWqUs+5u10=[/tex]
- 设在[tex=1.857x1.214]Bl3ki5VEsSE+maJQ9GYqhw==[/tex]面内有一分布着质量的曲线弧[tex=0.714x1.0]ravtxd2oof9d0U26ZFAIhw==[/tex],在点[tex=2.286x1.357]5kIMNyRYlKina6SoxHl1bg==[/tex]处它的线密度为[tex=2.857x1.357]uPCw4+LajbvEMadgD8dVDw==[/tex],用对弧长的曲线积分分别表达:(1)这曲线弧对[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]轴、对[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]轴的转动惯量[tex=2.071x1.286]q9KLBalK5nxg2b9aGSRmbQ==[/tex] .(2)这曲线弧的重心坐标[tex=1.571x1.071]UdsIDfPP4jgnUWak4SKWhmJaDMvaiR5qxVQYsNI6wt4=[/tex] .
- 写出由下列条件确定的曲线所满足的微分方程:(1) 曲线在点[tex=2.214x1.286]S6NgNKNoH80dgKR3db0eeg==[/tex]处的切线的斜率等于该点横坐标的平方;(2) 曲线上点[tex=3.0x1.286]xeRn5SNOQos1mbbKIFL6ow==[/tex]处的法线与[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex] 轴的交点为 [tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex],且线段[tex=1.571x1.286]DxkaqxrqEWa0dZ+z/jyakw==[/tex]被[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex] 轴平分。
- 设位于第一象限的曲线[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex]过点[tex=4.071x2.929]Xnmlr+KlAtEKhTk/UWXCIL7ggPtFLVwR5KDedvKG5QiK49EY8IBiyTmrn7nPv59IylKPeJtYvXSpGIBOA6VJmg==[/tex],其上任一点[tex=3.0x1.286]xeRn5SNOQos1mbbKIFL6ow==[/tex]处的法线与[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]轴的交点为[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex],且线段[tex=1.571x1.286]+40+xgx+PPxliwZt1F/RBA==[/tex]被[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴评分。(1)求曲线[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex]的方程;(2)已知曲线[tex=3.786x1.286]BQBaxI8k9F73aCnSHszVhg==[/tex]在[tex=2.071x1.286]EsPCSN3OT9yaBYSPcaTCfA==[/tex]上的弧长为[tex=0.357x1.286]O1PzqaL1+AfC/NERqj1Zew==[/tex],试用[tex=0.357x1.286]O1PzqaL1+AfC/NERqj1Zew==[/tex]表示曲线[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex]的弧长[tex=0.5x1.286]r65Ank8E1dV+BtDCLn5S+w==[/tex]。