设在[tex=1.857x1.214]Bl3ki5VEsSE+maJQ9GYqhw==[/tex]面内有一分布着质量的曲线弧[tex=0.714x1.0]ravtxd2oof9d0U26ZFAIhw==[/tex],在点[tex=2.286x1.357]5kIMNyRYlKina6SoxHl1bg==[/tex]处它的线密度为[tex=2.857x1.357]uPCw4+LajbvEMadgD8dVDw==[/tex],用对弧长的曲线积分分别表达:(1)这曲线弧对[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]轴、对[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]轴的转动惯量[tex=2.071x1.286]q9KLBalK5nxg2b9aGSRmbQ==[/tex] .(2)这曲线弧的重心坐标[tex=1.571x1.071]UdsIDfPP4jgnUWak4SKWhmJaDMvaiR5qxVQYsNI6wt4=[/tex] .
举一反三
- 设在[tex=1.857x1.286]c+Z4Z8NGrrwjZdvrK/yxYw==[/tex]面内有一分布着质量的曲线弧L,在点[tex=2.214x1.286]Cv8pj5T6IBFBezH8urMOfw==[/tex]处它的线密度为[tex=2.857x1.286]HAgr4vvbbRh39nHbtGr1Yw==[/tex]。用对弧长的曲线积分分别表达:(1)这曲线弧对x轴,对y轴的转动惯量[tex=2.214x1.286]0hlnfAqdsj8gXUVV2/uwZg==[/tex](2)这曲线弧的质心坐标[tex=1.571x1.071]rxaJ+U7633dB5xw/8lPdQtGi1SYqW7bm4LWqUs+5u10=[/tex]
- 设在[tex=1.857x1.286]j9TayWzddHzM0PQ/gL6C3Q==[/tex]面内有一分布着质量的曲线弧[tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex],在点[tex=2.214x1.286]S6NgNKNoH80dgKR3db0eeg==[/tex]处它的线密度为[tex=2.857x1.286]o4NdGwqKyionbD984dgRAQ==[/tex],用对弧长的曲线积分分别表达:(1)这曲线弧对[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴、对[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]轴的转动惯量[tex=2.214x1.286]XyrFaxXQbY1IJh/EfuaWVjvauo4VKjdJXnsVavBnb2w=[/tex];(2)这曲线弧的重心坐标[tex=1.571x1.286]G6buJjlYEUEwnDTay7crTgciovjELiaV2vL+l4R5uXQ=[/tex].
- 设在[tex=1.857x1.286]Tkxl36++OFZcq15BkOTnmg==[/tex]面内有一分布着质量的曲线弧[tex=0.714x1.286]LA74ioWWkXdGbHCtFk/Sog==[/tex],在点[tex=2.214x1.286]S6NgNKNoH80dgKR3db0eeg==[/tex]处它的线密度为[tex=2.857x1.286]o4NdGwqKyionbD984dgRAQ==[/tex],用对弧长的曲线积分分别表达:1) 该曲线弧对[tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex]轴、[tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex]轴的转动惯量[tex=0.929x1.286]ZrjCjoYSYGWJTk65wj74aA==[/tex]和[tex=0.857x1.286]2owJ5lZE4QNITUvByFD0Mg==[/tex];2) 该曲线弧的质心坐标[tex=0.571x1.286]GcARJchxbbiCM4nAf5Dt5g==[/tex]和[tex=0.571x1.286]4UekzWj7holRcG5GvLpPww==[/tex]。
- 把对坐标的曲线积分[tex=10.357x2.643]9ZvYYN547bK7o+Rqbgm1d40YX1/NzFT76vMp6lEHuW+lzYbu58t8nMWRjkrAGkJu[/tex]化成对弧长的曲线积分,其中[tex=0.714x1.0]ravtxd2oof9d0U26ZFAIhw==[/tex]为:在[tex=1.857x1.214]Bl3ki5VEsSE+maJQ9GYqhw==[/tex]面内沿直线从点[tex=2.286x1.357]/B4OpizC+GWNmgu3h9VMGQ==[/tex]到[tex=2.286x1.357]IznYKk7kywvI5iLU+xoABA==[/tex]。
- 利用对弧长的曲线积分的定义证明:如果曲线弧[tex=0.714x1.0]ravtxd2oof9d0U26ZFAIhw==[/tex]分为两段光滑曲线弧[tex=1.071x1.214]Ods//9scuB4SbtEcngN48g==[/tex]和[tex=1.071x1.214]hvBOH/BJXy7P5Edjy9eBJg==[/tex],则[tex=6.0x2.643]3JQcAf58bTzUADjxFt94RsLsELO8HYhYBnDutHHS+6c=[/tex][tex=11.857x2.786]CrTH7Jwn6oxg/ffEWL9KnuH3q71VZVeK4yKsrwq9x3Yd4Djt36Ep4Wap4DTROeVIvKwOagKqc5bwjWlqddLRDA==[/tex] .