设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是数域[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]上一个可逆矩阵,证明:如果[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有特征值,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值不等于0.
举一反三
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级正交矩阵,证明:如果[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有特征值,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值是1或[tex=1.286x1.143]Mj6+lbt3rBoas+xQLVX/oA==[/tex].
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是可逆阵. 证明:[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征值一定不为 0
- 设 4 阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足条件[tex=13.429x1.571]pNXwj7dxoGbcprO3/HATinbMcrt8sC5y1uPd3TRH6ssCiv8WtIXVXb9cSHXuJP20[/tex], 其中[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]为 4 阶单位矩阵,求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的伴随矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有一个特征值。
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是数域[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]上的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级矩阵.证明:如果[tex=1.429x1.0]0Cf4D4T9TapBdxwg6xMRmA==[/tex]中任意非零列向量都是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征向量,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]一定是数量矩阵.
- 二阶实正规矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 不是对称矩阵, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是正交矩阵的充要条件是 未知类型:{'options': ['[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的行列式值等于 1', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的行列式值等于 -1', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是可逆矩阵', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是奇异矩阵'], 'type': 102}