(Jordan-Chevalley 分解定理) 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶复矩阵, 证明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可分解为 [tex=3.786x1.143]ZPDCNCiUIwYwOt9O3PBAYA==[/tex], 其中 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是可对角化矩阵, [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex] 是幂零矩阵且 [tex=3.786x1.0]5xVwadhd/UKGXIGbp0aE+w==[/tex], 并且这种分解是唯一的.
举一反三
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶奇异复矩阵但不是幂零矩阵, 求证 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 相似于下列矩阵:[tex=5.0x2.786]jcCMHflCR8OS9TosV6N5vH23NHniMlEwXxHZzPyoM7wGtHPfHuUKUfQduivoh2saWB5iDW+hBFaG9wzMvmDk1Q==[/tex],其中 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是幂零矩阵, [tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex]是可逆矩阵.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定实对称矩阵, 满足 [tex=4.071x1.143]23C06xV+qahUl1T3xcoZnwRQpH8YtXCwkd9Ub4sG38M=[/tex],证明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可对角化.
- 若矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次幂零矩阵, 即 [tex=2.786x1.0]t6ogScZVzQ6nmR7J34fx7Q==[/tex] 但 [tex=4.5x1.429]LeMsK/GHf6ch8ZOCybGouXwgjeQprbWyKA1XUXYVQGI=[/tex] 如果 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 也是同阶 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次幂零矩阵, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 相似于 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex].
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实 (复) 矩阵, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可分解为 [tex=3.143x1.214]bx9fPZCBMZvYv69nOgo9Ew==[/tex], 其中 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex] 是正交 (酉) 矩阵, [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是一个上三角矩阵且主对角线上的元素全大于等于零, 并且若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 可逆矩阵, 则这样的分解必唯一.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶幂零方阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶可逆方阵,且 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 可换,则 [tex=5.071x1.214]RN2thfSI1MmKxRcibVWDuJHiSryPX2cHjTCV9twFdmY=[/tex] 都是可逆矩阵.