在啤酒与尿布的案例中,运用Apriori算法的主要目的是得出( )。
A: 频繁项集
B: 强关联规则
C: 最小支持度
D: 最小置信度
A: 频繁项集
B: 强关联规则
C: 最小支持度
D: 最小置信度
举一反三
- 关于关联规则,正确的是:( )。 A: 关联规则挖掘的算法主要有: Apriori和FP-Growth B: 一个项集满足最小支持度,我们称之为频繁项集 C: 啤酒与尿布的故事是聚类分析的典型实例 D: 支持度是衡量关联规则重要性的一个指标
- 关于关联规则,正确的是:( )。 A: 关联规则挖掘的算法主要有: Apriori和FP-Growth B: 一个项集满足最小支持度,我们称之为频繁项集 C: 啤酒与尿布的故事是聚类分析的典型实例 D: 支持度是衡量关联规则重要性的一个指标
- ( )是关联规则发现算法的核心。 A: 设置最小支持度 B: 发现所有频繁项集 C: 找到所有的强规则 D: 发现一些频繁项集
- 请根据Apriori算法回答以下问题 利用Apriori算法计算频繁项集可以有效降低计算频繁集的时间复杂度。在以下的购物篮中产生支持度不小于3的候选3-项集,在候选2-项集中需要剪枝的是() A: 啤酒、尿布 B: 啤酒、面包 C: 面包、尿布 D: 啤酒、牛奶
- 下列关于Apriori算法的说法错误的是( ) A: 初始化的目的是找到所有的 频繁 1-项集 B: Apriori算法主要包含初始化和迭代搜索两部分 C: 迭代的目的是通过上一次迭代得到的频繁(k-1)-项集得到频繁k-项集 D: Apriori算法通过最小置信度进行剪枝