设\( A,B \)均为\( n \)阶方阵,则必有( )
A: \( \left| {A + B} \right| = \left| A \right| + \left| B \right| \)
B: \( AB = BA \)
C: \( \left| {AB} \right| = \left| {BA} \right| \)
D: \( {\left( {A + B} \right)^{ - 1}} = {A^{ - 1}} + {B^{ - 1}} \)
A: \( \left| {A + B} \right| = \left| A \right| + \left| B \right| \)
B: \( AB = BA \)
C: \( \left| {AB} \right| = \left| {BA} \right| \)
D: \( {\left( {A + B} \right)^{ - 1}} = {A^{ - 1}} + {B^{ - 1}} \)
举一反三
- 设\( A,\;B \) 均为\( n \) 阶方阵,则必有( ). A: \( {(A + B)^2} = {A^2} + 2AB + {B^2} \) B: \( \left| {A + B} \right| = \left| A \right| + \left| B \right| \) C: \( \left| {AB} \right| = \left| A \right|{\kern 1pt} \left| B \right| \) D: \( {\left( {AB} \right)^{\rm T}} = {A^{\rm T}}{B^{\rm T}} \)
- 设\( A,B \) 为方阵,则 \( \left| {AB} \right| = \,\left| A \right|\,\left| B \right| \)。( )
- 设 \( A \)为 \( m \times n \)矩阵, \( B \)为 \( n \times m \)矩阵,则下列结论中不正确的是( ) A: \( {\left( {AB} \right)^T} = {B^T}{A^T} \) B: \( \left| {AB} \right| = \left| {BA} \right| \) C: \( tr\left( {AB} \right) = tr\left( {BA} \right) \) D: \( {A^T}A,\;B{B^T} \)均为\(n\)阶对称阵
- 设\( A \) ,\( B \)为\( n \)阶方阵,满足关系 \( AB = O \),则必有( ) A: \( A = B = O \) B: \( A + B = O \) C: \( \left| A \right| = 0 \)或\( \left| B \right| = 0 \) D: \( \left| A \right| + \left| B \right| = 0 \)
- 设\(A\)为\(n\)阶方阵,\(\left| A \right| = 2 \),则\(\left| {\left| A \right|{A^T}} \right|=\) A: \({2^{n + 1}} \) B: \({2^{n }}\) C: \({2^{n - 1}}\) D: \(2\)