设\( A,\;B \) 均为\( n \) 阶方阵,则必有( ).
A: \( {(A + B)^2} = {A^2} + 2AB + {B^2} \)
B: \( \left| {A + B} \right| = \left| A \right| + \left| B \right| \)
C: \( \left| {AB} \right| = \left| A \right|{\kern 1pt} \left| B \right| \)
D: \( {\left( {AB} \right)^{\rm T}} = {A^{\rm T}}{B^{\rm T}} \)
A: \( {(A + B)^2} = {A^2} + 2AB + {B^2} \)
B: \( \left| {A + B} \right| = \left| A \right| + \left| B \right| \)
C: \( \left| {AB} \right| = \left| A \right|{\kern 1pt} \left| B \right| \)
D: \( {\left( {AB} \right)^{\rm T}} = {A^{\rm T}}{B^{\rm T}} \)
举一反三
- 设\( A,B \)均为\( n \)阶方阵,则必有( ) A: \( \left| {A + B} \right| = \left| A \right| + \left| B \right| \) B: \( AB = BA \) C: \( \left| {AB} \right| = \left| {BA} \right| \) D: \( {\left( {A + B} \right)^{ - 1}} = {A^{ - 1}} + {B^{ - 1}} \)
- 设 \( A \)为3阶方阵,已知 \( \left| A \right| = 2 \),则 \( \left| { { A^{\rm{*}}}} \right|{\rm{ = }} \)______
- 设`\n`阶方阵`\A`经过初等变换后得方阵`\B`,则 ( ) A: \[\left| {\rm{A}} \right| = \left| {\rm{B}} \right|\] B: \[\left| A \right| \ne \left| B \right|\] C: \[\left| A \right|\left| B \right| \ge {\rm{0}}\] D: 若`\| A| = 0`,则`\| B| = 0`
- 设\(A\)为\(n\)阶方阵,\(\left| A \right| = 2 \),则\(\left| {\left| A \right|{A^T}} \right|=\) A: \({2^{n + 1}} \) B: \({2^{n }}\) C: \({2^{n - 1}}\) D: \(2\)
- 设\( A,B \)为\( n \)阶方阵,且\( AB{\rm{ = }}O \) ,则必有( ) A: \( BA{\rm{ = }}O \) B: \( A{\rm{ = }}O \)或\( B{\rm{ = }}O \) C: \( A,{\kern 1pt} {\kern 1pt} \,B \)的秩均小于 \( n \) D: \( \left| A \right| = 0 \)或\( \left| B \right| = 0 \)