设\( A,B \) 为方阵,则 \( \left| {AB} \right| = \,\left| A \right|\,\left| B \right| \)。( )
举一反三
- 设\( A,B \)均为\( n \)阶方阵,则必有( ) A: \( \left| {A + B} \right| = \left| A \right| + \left| B \right| \) B: \( AB = BA \) C: \( \left| {AB} \right| = \left| {BA} \right| \) D: \( {\left( {A + B} \right)^{ - 1}} = {A^{ - 1}} + {B^{ - 1}} \)
- 设 \( A \)为方阵,则 \( \left| { { A^T}} \right| = \,\left| A \right|\, \).( )
- 设\( A,\;B \) 均为\( n \) 阶方阵,则必有( ). A: \( {(A + B)^2} = {A^2} + 2AB + {B^2} \) B: \( \left| {A + B} \right| = \left| A \right| + \left| B \right| \) C: \( \left| {AB} \right| = \left| A \right|{\kern 1pt} \left| B \right| \) D: \( {\left( {AB} \right)^{\rm T}} = {A^{\rm T}}{B^{\rm T}} \)
- 设`\n`阶方阵`\A`经过初等变换后得方阵`\B`,则 ( ) A: \[\left| {\rm{A}} \right| = \left| {\rm{B}} \right|\] B: \[\left| A \right| \ne \left| B \right|\] C: \[\left| A \right|\left| B \right| \ge {\rm{0}}\] D: 若`\| A| = 0`,则`\| B| = 0`
- 设\( A \) ,\( B \)为\( n \)阶方阵,满足关系 \( AB = O \),则必有( ) A: \( A = B = O \) B: \( A + B = O \) C: \( \left| A \right| = 0 \)或\( \left| B \right| = 0 \) D: \( \left| A \right| + \left| B \right| = 0 \)