(3)已知圆管层流流速分布为[mathjaxinline]\{ {\begin{array}{cc}u_x=\frac{\gamma J}{4\mu}[r_0^2-(z^2+y^2)] \ ,u_y=0 \ ,y_z=0 \end{array}} [/mathjaxinline] (y、z轴垂直管轴),则( )
举一反三
- 4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$
- 9. 已知函数$z=z(x,y)$由${{z}^{3}}-3xyz={{a}^{3}}$确定,则$\frac{{{\partial }^{2}}z}{\partial x\partial y}=$( ) A: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ B: $\frac{z({{z}^{4}}-2xy{{z}^{2}}-xy)}{{{({{z}^{2}}-xy)}^{2}}}$ C: $\frac{z({{z}^{3}}-2xyz-{{x}^{2}}{{y}^{2}})}{{{({{z}^{2}}-xy)}^{3}}}$ D: $\frac{z({{z}^{3}}-2xy{{z}^{2}}-{{x}^{2}}y)}{{{({{z}^{2}}-xy)}^{3}}}$
- 下列绘制三维曲面图形的代码正确的是( )。 A: x=0:0.1:10;y=0:0.1:10;z=x.^2+y.^2;surf(x,y,z) B: x=0:0.1:10;y=0:0.1:10;z=x^2+y^2;mesh(x,y,z) C: x=0:0.1:10;[x,y]=meshgrid(x);z=x.^2+y.^2;mesh(x,y,z) D: x=0:0.1:10;[x,y]=meshgrid(x);z=x^2+y^2;surf(x,y,z)
- 下列函数是多元初等函数的是( ) A: $f(x,y)=\left|x+y\right|$; B: $f(x,y)=\text{sgn}(x+y)$; C: $f(x,y)=\dfrac{\arcsin<br/>x-e^{y}}{~\ln(x^2+y^2)~}$; D: $f(x,y)=\left\{\begin{array}{cc}\dfrac{xy}{~x^2+y^2~},<br/>&x^2+y^2\neq 0; \\0, &x^2+y^2= 0. \end{array}\right.$
- 求解偏微分方程[img=178x28]18030731a73d552.png[/img], 应用的语句是 A: DSolve[(x^2+y^2)D[u,x]+x yD[u,y]==0,u,{x,y}] B: DSolve[(x^2+y^2)Dt[u[x,y],x]+xyDt[u[x,y],y]==0,u[x,y],{x,y}] C: DSolve[(x^2+y^2)D[u[x,y],x]+xyD[u[x,y],y]==0,u[x,y]] D: DSolve[(x^2+y^2)D[u[x,y],x]+xyD[u[x,y],y]==0,u[x,y],{x,y}]