一房间,长、宽、高分别为[tex=5.786x1.286]DKXUYaBj6XrbBf0JSk5Ka3x3m0aTxMSYhMFqy3MoFS0=[/tex]一个发光强度为[tex=3.214x1.0]OHgk1wgw+tWw/tndjPGGeA==[/tex]的灯挂在天花板中心,离地面[tex=2.357x1.286]i0Ql55LRjnYZjLaQDTb48Q==[/tex] 求在房间角落处地板上的光照度。[br][/br]
举一反三
- 设函数f(x)在[tex=3.286x1.357]64m0xE4nFlaKGIakApV0PA==[/tex]上连续,且有f(0)=0及f'(x)单调增,证明:在[tex=3.5x1.357]vgrW1/jK/GZ1TOWaPFIQWA==[/tex]上函数[tex=5.071x2.429]KmCvFjqAEA9O51+9erVGP+KtDDqVtXZQWqxj1eiTO5k=[/tex]是单调增的。
- 从 [tex=5.357x1.214]NBm6zbtCxpRdBL/1thJg3fyzPytjzI/JcsTB4wEqmYs=[/tex]这 10 个数字中任取 3 个不同的数字,求下列事件的概率 : [tex=0.786x1.0]Gl8myqGBf3V5xKlLwXodGw==[/tex] 表示事件“这 3 个数字中不含 0 和 5 ;,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 表示事件“这 3 个数字中包含 0 或[tex=1.5x1.214]OJt+yd+zz6yceugzH92WSw==[/tex]表示事件“这 3 个数字含 0 但不含[tex=0.5x1.0]swhA5SpCD6lPteGlwRbm9g==[/tex];.
- 设f(x)具有性质:[tex=8.571x1.357]8gPeznjMnng12qtkk9Vgczii1Sh4d1qJxc9iHYT5+YI=[/tex]证明:必有f(0)=0,[tex=5.5x1.357]rt5qCY7TXHcsFUQrD44nPA==[/tex](p为任意正整数)
- 设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明至少存在一点[tex=3.643x1.357]lTsOOhJ85nTn3mrT2Mx0lw==[/tex]使[tex=6.286x1.429]JZ8spbP5y8lrG0FgeChLIS7LPAFOZNl0MwLjGUb1ZoE=[/tex]
- 设二维离散随机变量[tex=2.5x1.357]PWg5V4GQQafckGNgbx6gmw==[/tex]的可能值为(0, 0),(−1, 1),(−1, 2),(1, 0),且取这些值的概率依次为1/6, 1/3, 1/12, 5/12,试求[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]与[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex] 各自的边际分布列.