设方阵\( A \)和\( B \) 等价,\( A \) 的所有\( k \) 阶子式全为零,则( )
A: \( r\left( B \right) < k \)
B: \( r\left( B \right) = k \)
C: \( r\left( B \right) \ge k \)
D: \( r\left( B \right) \le k \)
A: \( r\left( B \right) < k \)
B: \( r\left( B \right) = k \)
C: \( r\left( B \right) \ge k \)
D: \( r\left( B \right) \le k \)
举一反三
- 设 \( A \)是 \( n \)阶方阵,\( R\left( A \right) = r < n \) ,那么( ) A: \( A \)可逆 B: \( A \)中所有\( r \) 阶子式不为零 C: \( \left| A \right| = 0 \) D: \( A \) 中没有不等于零的\( r \)阶子式
- 1.设${{J}_{k}}=\int_{{}}^{{}}{\frac{dx}{{{\left[ {{(x+a)}^{2}}+{{b}^{2}} \right]}^{k}}}}\quad (b\ne 0)$,则${{J}_{k}}$满足( )。 A: ${{J}_{k+1}}=\frac{1}{2k{{b}^{2}}}\left[ (x+a){{\left( {{(x+a)}^{2}}+{{b}^{2}} \right)}^{-k}}-(2k-1){{J}_{k}} \right],\quad (k\ge 2)$ B: ${{J}_{k+1}}=\frac{1}{2k{{b}^{2}}}\left[ (x+a){{\left( {{(x+a)}^{2}}+{{b}^{2}} \right)}^{-k}}+(2k-1){{J}_{k}} \right],\quad (k\ge 2)$ C: ${{J}_{k+1}}=\frac{1}{2{{b}^{2}}}\left[ (x+a){{\left( {{(x+a)}^{2}}+{{b}^{2}} \right)}^{-k}}+(2k+1){{J}_{k}} \right],\quad (k\ge 2)$ D: ${{J}_{k+1}}=\frac{1}{2{{b}^{2}}}\left[ (x+a){{\left( {{(x+a)}^{2}}+{{b}^{2}} \right)}^{-k}}+(2k-1){{J}_{k}} \right],\quad (k\ge 2)$
- \(A,B\)均为\(n\)阶方阵,且\(A\)与\(B\)合同,\( R\left( A \right) = 4 \),则\( R\left( B \right) = \) ______
- 若幂级数\(\sum\limits_{n = 1}^\infty { { a_n}} {x^n}\)在\(x = {x_0}\)处发散,则该级数的收敛半径满足( )。 A: \(R = \left| { { x_0}} \right|\) B: \(R < \left| { { x_0}} \right|\) C: \(R > \left| { { x_0}} \right|\) D: \(R \le \left| { { x_0}} \right|\)
- 设\( A \)是\( n \)阶方阵,\( R(A) = r < n \),那么( ) A: \( A \)可逆 B: \( A \)中所有\( r \)阶子式全不为零 C: \( \left| A \right| = 0 \) D: \( A \)中没有不等于零的\( r \)阶子式