A: \(R = \left| { { x_0}} \right|\)
B: \(R < \left| { { x_0}} \right|\)
C: \(R > \left| { { x_0}} \right|\)
D: \(R \le \left| { { x_0}} \right|\)
举一反三
- 若幂级数$\sum\limits_{n=0}^{\infty }{{{a}_{n}}{{x}^{n}}}$在$x=2$处收敛,在$x=-3$处发散,则该级数 A: 在$x=3$处发散 B: 在$x=-2$处收敛 C: 收敛区间为$(-3,2]$ D: 当$\left| x \right|\gt 3$时发散
- 将\(f(x) = {1 \over {2 - x}}\)展开成\(x \)的幂级数为( )。 A: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(( - 2,2)\) B: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n }}}}} \),\(\left( { - 2,2} \right]\) C: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(( - 2,2)\) D: \({1 \over {2 - x}} = \sum\limits_{n = 0}^\infty { { { { x^n}} \over { { 2^{n + 1}}}}} \),\(\left( { - 2,2} \right]\)
- 函数\(f\left( x \right)\)在点\(x = {x_0}\)连续是在点\(x = {x_0}\)处可微的( )。 A: 充要 B: 充分 C: 必要 D: 无关
- 设\( \left| { { x_0}} \right| = 4 \),\( A \)为正交矩阵,则\( \left| {A{x_0}} \right| = \)______
- 2. 设级数$\sum\limits_{n=0}^{\infty }{{{b}_{n}}}{{\left( x-2 \right)}^{n}}$在$x=-2$处收敛,则此级数在$x=4$处() A: 发散 B: 绝对收敛 C: 条件收敛 D: 不能确定敛散性
内容
- 0
5.下列函数中,在其定义域上有最大值和最小值的是()。 A: $f(x)=\left\{ \begin{array}{*{35}{l}} \ln \left| x \right|,\ \ \ x\ne 0 \\ 0,\ \ \ \ \ \ \ \ x=0 \\ \end{array} \right.$ B: $f(x)=\ln \left( \left| x \right|+1 \right)\ x\in [-1,1]$ C: $f(x)=\ln \left| x \right|,\ \ \ x\in [-1,1]\backslash \{0\}$ D: $f(x)=\left\{ \begin{array}{*{35}{l}} \ln \left| x \right|,\ \ \ 0\lt |x|\lt 1 \\ 0,\ \ \ \ \ \ \ \ x=0 \\ \end{array} \right.$
- 1
函数$y = \ln x$,则${\left( {\ln x} \right)^{\left( n \right)}} = {\left( { - 1} \right)^{n - 1}}{{\left( {n - 1} \right)!} \over {{x^n}}}$。( )
- 2
\( \lim \limits_{x \to {0^ + }} {\left( {\cot x} \right)^ { { 1 \over {\ln x}}}} \)=_____ ______
- 3
下列极限计算正确的是( ). A: \(\lim \limits_{x \to 0} { { \left| x \right|} \over x} = 1\) B: \(\lim \limits_{x \to {0^ + }} { { \left| x \right|} \over x} = 1\) C: \(\lim \limits_{x \to 0} {(1 - {1 \over {2x}})^{2x}} = {e^{ - 1}}\) D: \(\lim \limits_{x \to \infty } {(1 - {1 \over {2x}})^{2x}} = e\)
- 4
8.下列函数在$x_0=0$处连续的为()。 A: $f(x) = \left\{ {\begin{array}{*{20}{c}}<br/>{{{\rm{e}}^{ - \frac{1}{{{x^2}}}}},\;\;x \ne 0} \\<br/>{0,\;\;\;\;\;x = 0} \\<br/>\end{array}} \right.<br/>$ B: $f(x) = [x]<br/>$ C: $f(x) = {\mathop{\rm sgn}} (\sin x)<br/>$ D: $f(x) = \left\{ {\begin{array}{*{20}{c}}<br/>{\frac{{\sin x}}{{\left| x \right|}},\;\;x \ne 0} \\<br/>{1,\;\;\;\;\;\;\;x = 0} \\<br/>\end{array}} \right.<br/>$