设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是数域[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]上的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级矩阵.证明:如果[tex=1.429x1.0]0Cf4D4T9TapBdxwg6xMRmA==[/tex]中任意非零列向量都是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征向量,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]一定是数量矩阵.
举一反三
- [tex=0.5x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 以任意一个 [tex=0.5x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维非零列向量为特征向量的充要条件是 未知类型:{'options': ['[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是对角矩阵', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是数量矩阵', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是单位矩阵', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0是零矩阵'], 'type': 102}
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是数域[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]上一个可逆矩阵,证明:如果[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有特征值,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值不等于0.
- [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为正交矩阵的充要条件是 未知类型:{'options': ['[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的特征值全为 1 或 -1', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的列向量组成\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]\xa0维列向量空间\xa0[tex=1.286x1.0]LVtrVoR3luZyUPe3gwSlPw==[/tex]\xa0的一组标准正交基', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0的列向量两两正交', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0正交相似于单位矩阵'], 'type': 102}
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级正交矩阵,证明:如果[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有特征值,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值是1或[tex=1.286x1.143]Mj6+lbt3rBoas+xQLVX/oA==[/tex].
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称正定矩阵, 证明[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个互相正交的特征向量[tex=6.857x1.5]1OLDM79a1WnqWkErUXr8P604kgpkEAoDOqD5+BNAsbem5zwUCkpRL26F98rz8e/f[/tex]关于[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]共轭.