画出连续时间信号[img=236x25]18034af68fd6486.png[/img]的采样信号,采样周期为1/40s,正确的MATLAB语句是( )
A: stem([0:1/40:1],cos(20*pi*[0:1/40:1]));
B: plot([0:1/40:1],cos(20*pi*[0:1/40:1]));
C: fplot('cos(20*pi*t)',[0:1]);
D: t=0:0.01:1; xc=cos(20*pi*t); plot(t,xc);
A: stem([0:1/40:1],cos(20*pi*[0:1/40:1]));
B: plot([0:1/40:1],cos(20*pi*[0:1/40:1]));
C: fplot('cos(20*pi*t)',[0:1]);
D: t=0:0.01:1; xc=cos(20*pi*t); plot(t,xc);
举一反三
- 已知\(L\)为圆周 \(x = a\cos t,y = a\sin t(0 \le t \le 2\pi )\),则\({\oint_L {({x^2} + {y^2})} ^n}ds{\rm{ = }}\) ( ). A: \(2\pi {a^{2n + 1}}\) B: \(2\pi {a^{2n - 1}}\) C: \(\pi {a^{2n + 1}}\) D: \(\pi {a^{2n - 1}}\)
- 计算\({\oint_L {({x^2} + {y^2})} ^n}ds\),其中\(L\)为圆周\(x = a\cos t\),\(y=asint\)\((0 \le t \le 2\pi )\)。 A: \(2\pi {a^{n + 1}}\) B: \(2\pi {a^{2n + 1}}\) C: \(\pi {a^{n + 1}}\) D: \(2\pi {a^{n + 1}}\)
- 产生周期为1的三角波信号,正确的代码是 A: t=0:1/1000:5;y=sawtooth(2*pi*t,0.5);号,正确的代码是 B: t=0:1/1000:5;y=sawtooth(2*pi*10*t,0.5);,正确的代码是 C: t=0:1/1000:5;y=square(2*pi*t,0.5);� D: t=0:1/1000:5;y=square(2*pi*10*t,0.5);
- 计算\(\int_{\;L} {ydx + xdy} \),其中 \(L\)为圆周 \(x = R\cos t\), \(y = R\sin t\)上对应 \(t = 0\)到 \(t = {\pi \over 2}\)的一段弧。 A: -1 B: 1 C: 0 D: 2
- 曲线\(y = \cos x\)在点\(({\pi \over 2},0)\)处的曲率为 ( ) A: \({1 \over 2}\) B: \(0\) C: \(1\) D: \(2\)