曲线\(y = \cos x\)在点\(({\pi \over 2},0)\)处的曲率为 ( )
A: \({1 \over 2}\)
B: \(0\)
C: \(1\)
D: \(2\)
A: \({1 \over 2}\)
B: \(0\)
C: \(1\)
D: \(2\)
举一反三
- 曲线\(y = \sin x\) 在点\(({\pi \over 2},1)\)处的曲率为 ( ) A: \({1 \over 2}\) B: \(1\) C: \(2\) D: \(3\)
- 函数\(y = \sin {1 \over x}\)的导数为( ). A: \({1 \over { { x^2}}}\sin {1 \over x}\) B: \( - {1 \over { { x^2}}}\sin {1 \over x}\) C: \( - {1 \over { { x^2}}}\cos {1 \over x}\) D: \({1 \over { { x^2}}}\cos {1 \over x}\)
- \( y = {1 \over x},y = 0,x = 1,x = 2 \)所围平面图形绕\( x \)轴旋转所得旋转体体积\( V \)=( )。 A: \( \pi \) B: \( {\pi \over 2} \) C: \( {\pi \over 3} \) D: \( {\pi \over 6} \)
- \( y = {x^2},y = 0,\;x = 1 \)所围平面图形绕\( x \)轴旋转所得旋转体体积\( V \)为( )。 A: \( \pi \) B: \( {\pi \over 3} \) C: \( {\pi \over 2} \) D: \( {\pi \over 5} \)
- 下列方程中( )是一阶线性微分方程。 A: \( 2{x^2}yy' = {y^2} + 1 \) B: \( xy' + {y \over x} - x = 0 \) C: \( \cos y + x\sin y { { dy} \over {dx}} = 0 \) D: \( y'' + xy' = 4{x^2} + 1 \)