• 2022-07-02
    设[tex=3.0x1.0]nSpT6utOTqPkb5y/eotwqQ==[/tex]为四面体,[tex=3.071x1.214]f8f1Lc81Yx5pkwpSBihLlg==[/tex]依次是[tex=3.143x1.214]pQSzstHbMNQUlNb8ezn/Ag==[/tex]的三边[tex=5.357x1.214]XfpkBE2eHPsZJo4raIH/hQ==[/tex]的中点,取[tex=15.214x1.929]g/NP1JVvt9PpXkUJ72i4U5sxeUH1dJzcGznHJtJB1M0vB4oeVGFgombFOiIqD4Qop5RW51psWeMEXLL/PoHidlntGDkQubXOnI8fw/CefUqUEb5NKZpyD0kbHJCrX/MnMTM/llSEM48hZp9CChnGxkvLD1JJe0tqYkBIW5mm7eI7f5t4VlSdYmgde+AnR5GsidkNkBZkiQpyVcx3+Na0oI7jisY+PD0qZbEYTZHJDxA=[/tex]。求[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]到[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的点的坐标交换公式和向量的坐标变换公式,再求[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]到[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]的点的坐标变换公式和向量的坐标变换公式。
  • 举一反三