举一反三
- 设[tex=4.5x1.0]EEDa8i1sJWKtb2FOTjsTew==[/tex]为正六边形,取仿射坐标系[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]为[tex=5.286x1.929]zPGWKKbIhWuZABYCdoRdsB639BODwmisJi4axvh4jjF1YmvEAYTvRQ9Zk8HjX+sG/hSsjYjbjh4y4hRdNZ8LjA==[/tex],[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]为[tex=5.214x1.929]IrmWxoUIx1//yaEfHnSWn5rAkN7HQpWba14LTXWJSyehnYrXdmc3TetG8q5kaqqM7sC1fbiQ+1RArajE6vi3Hg==[/tex],求[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]到[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的点的坐标变换公式和向量变换公式,求[tex=3.357x1.857]i7vzbtmrNnPXa6DLYXijkJTVICdeWSf/TzJMfEShRYTZK9O4LGvxYZnknR8FaCcx[/tex]的[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]坐标和[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]坐标。
- 设仿射坐标系[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]到[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的点的坐标变换公式为:[tex=6.0x3.357]fnpmC2J6JmQBLyo5NmGAz9F5h9MIDykrH+xkCXNEswFbSyOS5TdM4ugwtleOzv06DE5emE2zI2DHLIFObz2RXrtsPqb9bEo98jkFn8618Ic=[/tex]。求[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的原点的[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]坐标,[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的基向量[tex=1.714x1.429]lInMIm9HkH5NrzWlNM9SJe/uwtRZgezWevkZvDX57P8=[/tex]的[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]坐标;求[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]的原点的[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]坐标,[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]的基向量[tex=1.714x1.429]lInMIm9HkH5NrzWlNM9SJe/uwtRZgezWevkZvDX57P8=[/tex]的[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]坐标。
- 设仿射坐标系[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]到[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的点的坐标变换公式为:[tex=6.0x3.357]fnpmC2J6JmQBLyo5NmGAz9F5h9MIDykrH+xkCXNEswFbSyOS5TdM4ugwtleOzv06DE5emE2zI2DHLIFObz2RXrtsPqb9bEo98jkFn8618Ic=[/tex]。求直线[tex=5.857x1.214]1pecbxZDB1xu/0H6ijHM3hqa9/cRwiBE3Vz+PmDUQBA=[/tex]在坐标系[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]中的方程。
- 设仿射坐标系[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]到[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的点的坐标变换公式为:[tex=6.0x3.357]fnpmC2J6JmQBLyo5NmGAz9F5h9MIDykrH+xkCXNEswFbSyOS5TdM4ugwtleOzv06DE5emE2zI2DHLIFObz2RXrtsPqb9bEo98jkFn8618Ic=[/tex]。求直线[tex=6.857x1.357]QJ8RvVa/Cs1tOntKquT1sVvrk/4lEkU87uZZxs8QAaAs3BqZP6C8rmlnOGLzaZbX[/tex]在坐标系[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]中的方程。
- 在右手直角坐标系[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]中,设两直线[tex=0.857x1.214]A3UMBK5Fhc/2fg/uf1O7gA==[/tex][tex=9.571x1.214]/b8gGI1O5mRosQgeDGb7kvr6j1hilxu+sVVfgkhzCpQ=[/tex]互相垂直,取[tex=1.786x1.214]/Om/i0rEH84v5lSAslsDtg==[/tex]为右手直角坐标系[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的[tex=3.357x1.357]dLKEsBQsbYT+daI3ZIAESBxYnKAkpHm8XQdRndx+CMA=[/tex]轴,试求[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]到[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]的点的坐标变换公式。
内容
- 0
如果坐标系[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]和[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]都是右手直角坐标系,且[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]的原点[tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex]的[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]坐标是[tex=3.214x1.357]OxiXbOj5ZC7UpmR5YlTpmQ==[/tex]到[tex=0.714x1.429]8fVOIP3O4lEuvAGxrQigAg==[/tex]的转角是[tex=0.857x2.143]WYqusP/xcIP4aFy4ILrfzA==[/tex],求[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]的原点[tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex]的[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]坐标以及直线[tex=3.714x1.214]qMjgWtw+H43j0Doz8MMSew==[/tex]在[tex=0.929x1.0]y8kojvrBqsWfR88OxZgFjw==[/tex]中的方程。
- 1
6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 2
若:(1)函数 f(x)在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]有导数,而函数g(x)在此点没有导数;(2)函数f(x)和g(x)二者在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]都没有导数,可否断定它们的和[tex=7.214x1.357]oX568MWmpJJk2c1dN8FEzQ==[/tex]在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数?
- 3
设[tex=3.0x1.0]Ep7/7dz2Giqp2w0H/ApC5Q==[/tex]为四面体,[tex=3.357x1.214]U5s0FuXSw1fRLfsYCtoejA==[/tex]依次是[tex=3.143x1.214]BypMH6cWAb0x8gikbHmOkm8G6z9CQ+Rgr92Svssi5/0=[/tex]的三边[tex=5.357x1.214]RvX5d6F8kU5w/AcW7PXISLXQLjS8gvlHu3C0XMXZl/I=[/tex]的中点,取[tex=9.643x1.286]tL08I33WUnWvxT87msgwBk+LJ5suVXVcz0h+YHhg+2jMwxCLyl4amRcKGxkzTite[/tex],[tex=10.143x1.286]5gq7fGTEd0DHQ2R8hx5KBiL34b18iekA8tWeaLe4icBok4RIlf1v6nAvroLeufUl[/tex] . 求[tex=7.0x1.286]UCapsiLmr0y/ld1e87FgTme7H5jDqSJ/r6EsNWkRZIQ=[/tex]的[tex=1.0x1.286]0p7etQqk8iimVHRujNcPQw==[/tex]坐标。
- 4
下列方程中是一阶微分方程的是[input=type:blank,size:4][/input]. 未知类型:{'options': ['[tex=8.0x1.571]SnLzj4UlSfnGqNtEzxfZSuZwslGsWxsvP2Y+yf7H578Vefe1Ol/nJT135DjkdnSNNikL3arAj80BjvPHaHCDiA==[/tex]', '[tex=10.571x1.571]JR4yrHJRIZfJXwhFSObwrfajFnWUvXzM/YiA3M6aDKuVBZ8I+7v5iXTXdA3E6Rm4vOE2BCfPwFP2rmRygXKEUDk1qLsNDCJ2p8GEbfCSr2s=[/tex]', '[tex=5.643x1.357]m0sKckxx+jZ9iltApBtB23TBISIOx/g0judcsS+akNFZrUNCq3g+BIVQwGbQEh/C[/tex]', '$y^{(4)}+5 y^{\\prime}-\\cos x=0$'], 'type': 102}