求解绕圆柱的水流问题.在远离圆柱因而未受圆柱干扰处的水流是均匀的,流速为[tex=0.857x1.0]RgdIKllY0XaiJRBH+1GgPQ==[/tex].圆柱半径为[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex].
举一反三
- 电流 [tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]沿半径为[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]的导体圆柱壳均匀分布,通过圆柱轴将导体壳劈成两半,求两部分单位长度的吸力.
- 半径为 [tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]的导体圆柱外套有一个半径为 [tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]的同轴导体圆筒,长度都是 [tex=0.357x1.0]5vVfAZliYwqMw8JaLE+iEA==[/tex],其间充满介电常量为 [tex=0.5x0.786]ux0J/jSeHg2jOmBitEwINg==[/tex] 的均匀介质,圆柱带电为[tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex], 圆筒带电为 [tex=1.571x1.214]zQhd8FJJNy1onswjEodGWw==[/tex], 略去边缘效应,试证明[tex=6.429x1.5]lTFV2hbbkyHZuxrsO6xcXJgzVnAPKSO1SgX6ukJqK/g=[/tex] 是圆柱和圆筒间的电容.
- 一个半径为[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的均匀带电圆柱(无限长)的电荷密度是[tex=0.857x1.0]E5geom3zXj0UX9rHVYD7wA==[/tex]求圆柱体内、外的电场强度。
- 已知无限长导体圆柱半径为[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex],通过的电流为[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex],且电流均匀分布,试求柱内、外的磁感应强度。
- 半径为 [tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]的导体圆柱外套有一个半径为 [tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]的同轴导体圆筒,长度都是 [tex=0.357x1.0]5vVfAZliYwqMw8JaLE+iEA==[/tex],其间充满介电常量为 [tex=0.5x0.786]ux0J/jSeHg2jOmBitEwINg==[/tex] 的均匀介质,圆柱带电为[tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex], 圆筒带电为 [tex=1.571x1.214]zQhd8FJJNy1onswjEodGWw==[/tex], 略去边缘效应在半径为 [tex=5.357x1.357]IQG/a2kQ0z6ZJngsZPXw5g==[/tex]处,电场能量密度是多少 ?