设[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex]为集合[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]到集合[tex=0.929x1.286]LVX5vc/W3cjHwTt0bN3vBg==[/tex]的映射,[tex=0.5x1.286]xchkYdkyGsHZyvcALOmunw==[/tex]为集合[tex=0.714x1.286]DukDxHxPOc44nPzii5M3Bw==[/tex]到集合[tex=0.929x1.286]pklyOURbfRZ+EzHdcW+s8g==[/tex]的映射,证明:(1)如果[tex=1.143x1.286]cw/xj2Um4/EiSYeHVKBxNw==[/tex]为单映射,则[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex]为单映射;(2)如果为[tex=1.143x1.286]cw/xj2Um4/EiSYeHVKBxNw==[/tex]满映射,则[tex=0.5x1.286]xchkYdkyGsHZyvcALOmunw==[/tex]为满映射。
举一反三
- 设[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex]为集合[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]到集合[tex=0.929x1.286]LVX5vc/W3cjHwTt0bN3vBg==[/tex]的可逆映射,[tex=0.5x1.286]xchkYdkyGsHZyvcALOmunw==[/tex]为集合[tex=0.929x1.286]LVX5vc/W3cjHwTt0bN3vBg==[/tex]到集合[tex=1.143x1.286]X6m2nVM7944E1/vM23HDBw==[/tex]的可逆映射,则[tex=1.143x1.286]cw/xj2Um4/EiSYeHVKBxNw==[/tex]为集合[tex=0.714x1.286]yQZEV57S9rHjYvgfJydTyg==[/tex]到集合[tex=1.143x1.286]X6m2nVM7944E1/vM23HDBw==[/tex]的可逆映射,且[tex=7.286x1.286]N/0j7ORzcADxrTTXuyNptdZGiW3q1HAQwRc6ffOoXaU=[/tex]。
- 设[tex=5.214x1.214]l2vYijvwphpA0Bdo8olvNhKvOVd4RCELKut0jj6S5qs=[/tex]是连续映射,Y是Hausdorff空间,证明:(1)集合[tex=9.357x1.357]QCqopxinhs+TvVYgLw48vVpO4x/Rie4gzAlmw62rJGM=[/tex]是X的闭子集;(2)如果A是X的稠密子集且[tex=3.714x1.357]fo4X83uQk0aLKgSpBjpSMw8oj58YdJ5bCiu5d4gfWQqZvgjwV7CYEcyqXJHmRmoq[/tex],则f=g。
- 设[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]是一个正规空间,[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.929x1.286]uswT/CEcOIwMpCvTz/zeaA==[/tex]中的一个闭子集,[tex=4.429x1.286]9E9uCRlEUVwjmCjRwUWN7yD2hR09oSuHV8RYVI/P1DE=[/tex]是一个连续映射,证明:有一个连续映射[tex=4.643x1.286]LtyHmSkiamQwqmWJV/457i2Nvqate5YQFh9d8o5hJ18=[/tex]是映射[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex]的扩张。
- 设[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex]为从欧氏平面[tex=1.286x1.214]QhBrqZ0FU+twtxjFFi5vxvnG10FFS5WsLXGF/Hpdxzg=[/tex]到实数空间[tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex]的连续映射,证明[tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex]中最多只有两个点的[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex]原象为非空的可数集。
- 已知总体X的密度函数为[tex=7.714x2.0]W6lO2xb08XtfGU+i+eWnnw0CYD2q/WnshEaqki8GpVMOeqy/otZWzfjDp5+q5K1zhcE5PYDwCsbkps/Ai80OlAWY2LzwO27YO5WUcjykYsTiv/aqhrPzMG7mjSWssq7cUfDYwL/Ba6ELGNi0tzZLIQ==[/tex],[tex=1.214x1.214]Eh13YTQY62V2jiw99mPjtA==[/tex],[tex=1.214x1.214]CN6DjqLuf+rqHGJDNNgdBg==[/tex],...,[tex=1.286x1.214]cmYIy5GvvFOF7TsVoM1mWQ==[/tex]为来自总体X的简单随机样本,[tex=0.643x1.286]LTFTesLIJc93sanD/R60mA==[/tex]为大于0的参数,[tex=0.643x1.286]LTFTesLIJc93sanD/R60mA==[/tex]的最大似然估计量为[tex=0.643x1.286]6aLR5cs+zL1ZJ/ZaZm5bybopi938kIu79zfe9WEwAKg=[/tex]。(1)求[tex=0.643x1.286]6aLR5cs+zL1ZJ/ZaZm5bybopi938kIu79zfe9WEwAKg=[/tex];(2)求[tex=1.429x1.286]kAj2yPcF3eKnwjhncaSvSHCAvuBvmcXbhaVW7sTnRdA=[/tex],[tex=1.429x1.286]qRLvccS7Ogyct3oif4OV1P/xMQdG7ad8lpt2hyG7+nU=[/tex]。