设[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex]为从欧氏平面[tex=1.286x1.214]QhBrqZ0FU+twtxjFFi5vxvnG10FFS5WsLXGF/Hpdxzg=[/tex]到实数空间[tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex]的连续映射,证明[tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex]中最多只有两个点的[tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex]原象为非空的可数集。
举一反三
- 证明欧氏平面[tex=1.286x1.214]QhBrqZ0FU+twtxjFFi5vxvnG10FFS5WsLXGF/Hpdxzg=[/tex]的子空间[tex=13.429x1.357]l4n0xkgFXGGZAeEWYZHPAjHYHcMYP3iF1C+2TJJELNVmZwBO02PJaQnjVRJoeZglbvvOevD7iP2XKH7aKwTa4A==[/tex]不同胚于[tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex]。
- 设 [tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] 在有界升集 [tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex] 上一致连续, 证明:(1) 可将 [tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] 连续延拓到 [tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex] 的边界.(2) [tex=0.643x1.286]+RQz+inOZSqc5WvKyEpD0Q==[/tex] 在 [tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex] 上有界.
- 证明: 实数域 [tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex] 作为它自身上的线性空间与线性空间 [tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex]. 同构.
- 设[tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex]是实数集合,[tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex]关于数的乘法运算“[tex=0.357x0.786]3p9iFfA+hJQ9w74wku7eHg==[/tex]”能构成( )。
- 在实数集合[tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex]中证明下列推理的有效性:因为[tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex]中存在自然数,而所有自然数是整数,所以[tex=0.929x1.0]CsWCAOxbxbvo3bJoGMwrfw==[/tex]中存在整数。