设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从参数为1的指数分布,则数学期望[tex=6.214x1.571]i01SkQWiwRsH9ksexTRJCmHf+OSWdNd725mx5NnM9js17ETJhwTj7M8ffxYH/4tL[/tex]______
举一反三
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从参数为 1 的指数分布,则数学期望 [tex=6.357x1.571]k1tzMzRO2N9q5Z6OI4wmH+H4OayO8/NBHyfgwfpUj4g=[/tex][input=type:blank,size:2][/input]
- 设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从自由度为[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]的[tex=1.071x1.429]637LVdgs6x2/Us8WxEQwHA==[/tex]分布,求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的数学期望与方差.
- 设 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从参数为 1 的指数分布,则 [tex=5.786x1.357]H3ckiigpCC3pHrPT5wfGlQ==[/tex] 的分布函数 [tex=3.143x1.357]vy7TvbBS2NI5bCSFxXNepg==[/tex]?
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,且服从参数为 1 的指数分布. 记 [tex=13.5x1.357]ZrmgIX329+lIMwj+0JP7oX4KmceUiv4NOTdLGvSfjGFY26aIR9qNFK9EJaP3gu/x[/tex] 求[tex=3.857x1.357]t0PsS3YAPSnhTBV9LUFwGQ==[/tex]
- 设连续型随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[tex=12.857x2.429]U8EmrNdvLYP7VnO9GCL0WKC9lw90KXXShABMLxBUPz+883V6ZlmOKYenQdRp5qeYe2K4EeF5ruQqhPOElrvMWA==[/tex],求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的数学期望与方差.