举一反三
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为 : [tex=10.357x2.5]D7bc2+eUwrrbwGCdv8wBHqSGNi2eUimJPhHvHDm2CRQIB0JsD/yM1xJWLrcsKlMCcd5OnLoQn8mUkkof5ma5/A==[/tex], 求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的期望值与方差。
- 已知离散型随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率分布为[img=397x83]178ee6aa0d1a25e.png[/img](1) 写出[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的分布函数[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex];(2) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的数学期望和方差.
- 已知连续型随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为 [tex=8.929x2.643]dUcodvDWtqauxxYqstYraYYnGrqGMpFlnDNeh3fMviNeHqqyGYBMyUW09Sfax0Uj[/tex] 则 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的数学期望 [tex=3.143x1.357]XPIlYA2pF31nJk65mR7nxA==[/tex][input=type:blank,size:6][/input]; [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的方差 [tex=3.214x1.357]qLeUFrJJgE70Kq+FCmRKBg==[/tex][input=type:blank,size:6][/input].
- 设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]服从自由度为[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]的[tex=1.071x1.429]637LVdgs6x2/Us8WxEQwHA==[/tex]分布,求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的数学期望与方差.
- 已知随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[tex=13.0x2.357]nHHN4pLpj1G1uhQpyLUatreMse16BhxCX+nm8cZ5nxW1R+KIjomlLFfyrFplv9mykQ0cFIpaQRbRTlU90WEwNA==[/tex]求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布函数.
内容
- 0
设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的密度函数为[tex=8.5x2.143]Ca+H1VjqhIFFe3JC2XAU2rOuJUFZivOezxxgZEpNix4wWRHa7Q2XYP2aHPPIgOy/[/tex],试求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的特征函数.
- 1
设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 以概率 1 取值为 0,而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 是任意的随机变量,证明 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立.
- 2
设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 具有下列概率密度,求其数学期望和方差.[tex=5.571x2.357]Uvh5Koks4Vyfe25VcsYap3QD/duOhKGtDqGFfE7BQao=[/tex]
- 3
设 5 次重复独立试验中每次试验的成功率为[tex=1.286x1.286]ZusIaH4hqZCvyUHDKPvJiQ==[/tex], 若记失败次数为[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex], 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的数学期望。
- 4
设二维随机变量的联合概率密度函数为:[tex=15.929x2.429]a9neBZVmd3fG0ctvwI5Oxjq4tahRNUHDFWrzGhfY3Q0cjRAwaIowsKdF4kv0YlI7cz3ff38MqPwC8cqj7rmFdXzCqzx6ku/IL/JGj3cqUgA=[/tex] 求:随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 至少有一个小于 2 的概率.