设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维向量空间, [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 和 [tex=0.714x1.214]hEHZwhVlHPnf9D4udzi0EA==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的线性变换, 则它们的像空间维数相同的充要条件是
未知类型:{'options': ['[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]\xa0和\xa0[tex=0.714x1.214]hEHZwhVlHPnf9D4udzi0EA==[/tex]\xa0都是可逆变换', '[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]\xa0和\xa0[tex=0.714x1.214]hEHZwhVlHPnf9D4udzi0EA==[/tex]\xa0的核空间相同', '[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]\xa0和\xa0[tex=0.714x1.214]hEHZwhVlHPnf9D4udzi0EA==[/tex]\xa0的像空间相同', '[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]\xa0和\xa0[tex=0.714x1.214]hEHZwhVlHPnf9D4udzi0EA==[/tex]\xa0在任一组基下的表示矩阵的秩相同'], 'type': 102}
未知类型:{'options': ['[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]\xa0和\xa0[tex=0.714x1.214]hEHZwhVlHPnf9D4udzi0EA==[/tex]\xa0都是可逆变换', '[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]\xa0和\xa0[tex=0.714x1.214]hEHZwhVlHPnf9D4udzi0EA==[/tex]\xa0的核空间相同', '[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]\xa0和\xa0[tex=0.714x1.214]hEHZwhVlHPnf9D4udzi0EA==[/tex]\xa0的像空间相同', '[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]\xa0和\xa0[tex=0.714x1.214]hEHZwhVlHPnf9D4udzi0EA==[/tex]\xa0在任一组基下的表示矩阵的秩相同'], 'type': 102}
举一反三
- 设 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维向量空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的非零线性变换, 已知 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 不是可逆变换. 下面条件能保证 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 的 核空间与像空间之交为零的是 未知类型:{'options': ['[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]\xa0在\xa0[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]\xa0的某组基下的表示矩阵\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0适合\xa0[tex=2.786x1.0]KPihQJj4ZZU9JEE9t5X/Uw==[/tex]', '[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]\xa0在\xa0[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]\xa0的某组基下的表示矩阵\xa0[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]\xa0适合\xa0[tex=2.714x1.214]+yxb2fEUuHYxLwX2MLViFg==[/tex]', '[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]\xa0的核空间维数与它的像空间维数相等', '[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]\xa0的核空间维数与它的像空间维数之和等于\xa0[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]'], 'type': 102}
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维向量空间, [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]及 [tex=0.714x1.214]hEHZwhVlHPnf9D4udzi0EA==[/tex] 是其上的线性变换, 求证:[tex=16.5x1.214]79Wd/JsaQKi3RBB3vwr832ZyBiTlGz3KhRn1+2YPkL6yUB0ieAOQC9LqcKUw+EQQSHzmVflmQkONNKd31hGxPnwq6awd7WhqKBBunapLAIaDjwaRAnAyGoFEzJW5C+5znhHHY4hIBM4Hk+2WMheVTN90C6lXzT4S0lm8W8IS+pX6huiMQYwj8ui94BM0NlvmvKO49KulM0+TUlQrxy+jtaqFFo2sskhBAqWAA36Y6iY=[/tex]
- 设 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的线性变换, [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 在 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的一组基下的表示矩 阵为对角阵且主对角线上的元素互不相同, 求 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 的所有不变子空间.
- 用逐次微分的方法消去任意函数[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 和[tex=0.714x1.214]hEHZwhVlHPnf9D4udzi0EA==[/tex] :[tex=6.143x1.357]gYdJEOlUWJilS3kJ11I+WcPqVE2SwzvFw8PLTztPAWs=[/tex].
- 设 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 是线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 的线性映射, 则必存在 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 和 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 的两组基, 使线性映射 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex] 在两组基下的表示矩阵为 [tex=5.5x2.786]jcCMHflCR8OS9TosV6N5vOGsz4lMsaik2WCvgDGOBAocIVyOBfqUzesJTrjK6zZ+d35oA8cH1C8Ci4UbJlvD8Q==[/tex]