已知矩阵(A=egin{bmatrix} 1&2 &3 \4 &5 &6 end{bmatrix}),若对A做初等变换,可将矩阵A化为单位阵.
举一反三
- 设`alpha_{1}, alpha_{2},alpha_{3}`均为3维列向量,记矩阵(A=egin{bmatrix}alpha_{1} ,& alpha_{2} ,& alpha_{3}end{bmatrix}),(B=egin{bmatrix}alpha_{1}+alpha_{2}+alpha_{3} , & alpha_{1}+2alpha_{2}+4alpha_{3} , & alpha_{1}+3alpha_{2}+9alpha_{3} end{bmatrix},) 如果(egin{vmatrix} A end{vmatrix}=1,)那么(egin{vmatrix} B end{vmatrix})=______
- 矩阵(A=egin{bmatrix}1&2&-1 \ 3&4&-3\ 5&-4&1 end{bmatrix})可逆.
- 设矩阵\(N=\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}\),其中\(A=\begin{bmatrix}4 & 1 \\ 3& 1\end{bmatrix}\),\(B=\begin{bmatrix}1 & 0 \\ 0& 1\end{bmatrix}\),则\(N^{-1}=\)
- 已知矩阵\(A=\begin{bmatrix}0&1&0&0\\1&0&0&0\\0&0&0&1\\0&0&1&0\end{bmatrix}\),则\(A^{-1}=A\)
- 矩阵(A=egin{bmatrix}0&1&3&2\0&4&-1&3\0&0&2&1\0&5&-4&3end{bmatrix}),则(A)的秩为______