设[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex]是区间[tex=1.929x1.286]5WiKxiqIs2aMQ1aNQurkGw==[/tex]上的任一非负连续函数。(1)试证:存在[tex=4.286x1.286]KOOhcqs6MLRLVmzwcF6jPnDkK7UPrPgRw1Ohj6XCUUk=[/tex],使得在区间[tex=2.429x1.286]eUK3hgD4pzwFkA8D0CYb96xeiuxOVGGfdWLQXXemWm8=[/tex]上以[tex=2.5x1.286]5zET9n/RJxMEroNltOnqwusvIM0uoFG3Zaf7nXFSpP8=[/tex]为高的矩形面积,等于在区间[tex=2.429x1.286]15I+/ervxdIdvY+T1Mq8vw==[/tex]上以[tex=3.714x1.286]ILxTGSNsFVqbb4UrB1q2og==[/tex]为曲边的曲边梯形面积。(2)又设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在区间[tex=2.143x1.286]VykF7BpO3NFT550xU7Tx1w==[/tex]内可导,且[tex=6.786x2.071]yF7pvVInh0eInoseQrSNorUKnePYyZHNdL9+anbi2HhZuECu3GX/eWDXHHnIkghW[/tex],证明(1)中的[tex=1.0x1.286]5PBm7Rex1+3Bx6Y1vbx1pg==[/tex]是唯一的。
举一反三
- 设[tex=3.143x1.357]SvkmdiaSCBne2lfTn9xiFw==[/tex]是区间[tex=2.0x1.357]AUoDsQBgen8/+sL3yGoyYA==[/tex]上的任一非负连续函数.(1) 试证存在[tex=3.857x1.357]fWMahRPmeOz2vFswwALLoYJZfma9BS+76Iie6qawvP0=[/tex], 使得在区间[tex=2.429x1.357]slKUvVfK6nrkgAgt40NEfWz9VLyWwxfs1U40X5t/Llk=[/tex]上以[tex=2.357x1.357]5s1Pyp2g/W5DyoDffIRFvJb8dtW9qy/mmMOGrha2vV4=[/tex]为高的矩形面积,等于在区间[tex=2.429x1.357]UORCQbmxNTG/LVkEc9DmRbPjLmOSM49uR9LV2Mg+w8U=[/tex]上以[tex=3.143x1.357]SvkmdiaSCBne2lfTn9xiFw==[/tex]为顶的曲边梯形的面积(2) 又设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在区间[tex=2.286x1.357]4AG4sq9ONHpAms0C151/TQ==[/tex]内可导,且[tex=7.071x2.429]h5cxzP+tK0GuHRnC+rZPD1ib11THBa5kNiuysfdY5cNhHtSCwMEvAv2aI7Zn5Yvs[/tex],证明(1)中的[tex=0.929x1.0]mQGdf3XTfQx0Qped0rrM9g==[/tex]是唯一的.
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- set1 = {x for x in range(10)} print(set1) 以上代码的运行结果为? A: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} B: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10} C: {1, 2, 3, 4, 5, 6, 7, 8, 9} D: {1, 2, 3, 4, 5, 6, 7, 8, 9,10}
- 求下列函数的单调区间、凹凸区间、极值点、拐点和渐近线,并绘图(图略).(1) [tex=6.643x1.5]bfylM61K4fB2dxr0OSsfGnNoGCHA31PVTv+V6O1K8rw=[/tex](2)[tex=7.643x1.571]v8BogKFXW30N+HMJ7QR6DhxEDs5D0riUpoj095rhlGc=[/tex](3) [tex=3.714x2.143]X1YpNX45Pb+t3RD9Lv2Xa/npVx6iPUE04M2Y4K2k/cw=[/tex](4) [tex=5.071x3.0]4TWEbfJ+QFPbBo6PXWTsCrjc66tVrHBOTlDUBxhSpARz8/MfCO/nUo/gE3SyIffw[/tex](5)[tex=6.571x2.429]gt+k1kCw/+VFBVaKddmG6PvDvxiTdyZFXDwIPBeuGlw=[/tex](6)[tex=5.643x1.429]Hzyd6Qvm69qjRqgBIuKTx/cTmFyy56Dt2K/GC7NoCdc=[/tex](7) [tex=7.143x1.214]CwtdUElTamN1NqF0aKHeWGdaXEazoOnz3w3c67izzuE=[/tex](8)[tex=4.714x2.786]cxjZEag+Wbr67lAUIC3Slk2OV17yHgezOhFRferr5F0=[/tex].
- 对 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的不同值,分别求出循环群[tex=1.143x1.214]StMMJ6qThnpokZJIPGrdFyP3vrLnUdltYxmLxjw8za8=[/tex]的所有生成元和所有子群。(1) 7; (2) 8; (3)10 ;(4) 14 ; (5) 15 (6) 18 。