用 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 除 [tex=2.143x1.357]AzA+dc6lPFG+jp8sJHIuiQ==[/tex] 求 [tex=16.071x1.5]qSzlvdMz+JlJYIllxVdJY1H3ALvJ6u7cHzE4bfUTYRzD7xqrWQJYzcVRYa7YpQp8[/tex] 商式与余式
举一反三
- 用 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 除 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex], 求 [tex=15.571x1.5]pZTL2AjXmFS4UBvda81d61BBehHgUIWQGu2zR5nrQMQggHi83cGPizAoEFuJKu1U[/tex] 商式与余式.
- 设 [tex=16.357x1.5]kr7k0KBPUeONeZwTW+894khfetYN31lKq1nVLp8hE2dcnyvRVQtizVN+TeVGKedy[/tex](1) 求[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 除 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的商 [tex=1.857x1.357]9+kIsKaWTXKIfcjZp3srqA==[/tex]和余式 [tex=2.143x1.357]u0kLHrRFHKwKpOrb+U7MSA==[/tex](2) 求首项系数为 1 的最大公因式 [tex=5.214x1.357]ULfD42YUHpUMzAJu7WPRDKu5//4FSSF/xXyTUDWUUQw=[/tex](3) 求多项式 [tex=4.071x1.357]jxvhZiY+yy3z8BpZfEQInA==[/tex] 使[tex=13.929x1.357]Wh/7jOZlE0fZtGn7AMNHm89Nhtbm+DWd6RzkJ1+fXVGFMF0xdqviYq0jE8QpoFCF[/tex]
- 已知[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]为偶函数,[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]为奇函数,且[tex=8.857x1.357]J70c06NcKSuavVueJFA+2JxXMulFojgPT0TTO8QgrTU=[/tex],试求[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]、[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]。
- 设 [tex=9.214x1.357]oVr3Dwq4mCJpVeSnaB2gBSqRRI0mgMhbkNKKzB8hCuo=[/tex] 中的一个多项式 [tex=2.286x1.357]Ag+wTR6A0dJofzIiroQ/6w==[/tex] 称为 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一个最小公倍式, 如果1) [tex=9.429x1.357]m1EBBdKEXv9v36Fy4gQ/+7AP03BpeLROQalNuHobJ3s=[/tex]2) [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的任一公倍式 (即 [tex=2.0x1.357]beH6DnGK6LEsYI2cIHxhuQ==[/tex] 中既能被 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 整除, 又能被 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 整除的多项式) 都是 [tex=2.286x1.357]Ag+wTR6A0dJofzIiroQ/6w==[/tex] 的倍式. (用 [tex=4.714x1.357]hvdzEuFkEvrNjuF8e4Z/2g==[/tex] 表示首项系数是 1 的那个最小公倍式, 证明 : 如果 [tex=4.143x1.357]9L2r5tlh3JJ32yY4a6m3XQ==[/tex] 的首项 系数都是 1 ,则 [tex=10.786x2.714]86eOesvSLJzo0xGCqVDGZjz8QI0p4+K1nnRoxp7vWiIU89VBq3OOdIIooTYE8A8C[/tex]
- 证明: 在 [tex=2.0x1.357]beH6DnGK6LEsYI2cIHxhuQ==[/tex] 中, 如果 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的倍式和, 并且 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一 个公因式, 则 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一个最大公因式.