试用德拜模型,求[tex=3.286x1.0]WCVEqj8u5MMVvTqKxXT2mA==[/tex]时,晶格的零点振动能.[br][/br]
举一反三
- 采用德拜模型,求出[tex=2.429x1.214]etPV9MyjqlnJXypNQmRt2A==[/tex]时原子的均方位移,并讨论高低温极限情况。[br][/br]
- 求微分积分方程[tex=11.143x2.857]wLaylZF3S7c2OdMRApfJ0GNJp/Yvx3tqU0Nd9TUmtohCIFkA2qBUrZFWUnUSC9O78Mzdj//x/fSpWPDS3ABUzQ==[/tex] 的解[br][/br][tex=1.714x1.357]RiG8EZN5ZhRw4jDO6I5Cvg==[/tex], 其中[tex=4.143x1.571]S6T8nD5eCJ/mB2hv2g0/MA==[/tex]
- 一列沿 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 正向传播的简谐波, 已知[tex=2.0x1.214]e3GRGHgLzKkBjizn4lS+Yw==[/tex] 和[tex=3.786x1.214]efaK1jB04QjVIiIJTtVX5Q==[/tex] 时的波形如图[tex=1.786x1.0]aTumgwoT71XR4GgYE3x1Sw==[/tex]所示. 试求:[br][/br]画出[tex=0.786x1.0]YEkxBRWVe8SyiK/VG6WTCQ==[/tex]点的振动曲线.[img=438x235]17dfbec351129fc.png[/img][br][/br]
- 假设某消费者的均衡如图 3-6 所示。其中, 横轴 [tex=2.0x1.286]QYmlkkOk7gPGCGLA/FPmOA==[/tex] 和纵轴 [tex=2.0x1.286]OvCCp2S3MTwVwuwuk/Hqdw==[/tex] 分别表示商品 1 和商品 2 的数量, 线段 [tex=1.571x1.286]aR1a8Eu3rZLX3flcxLOVFw==[/tex] 为消费者的预算线, 曲线 [tex=0.786x1.286]sgM90Q/VISKeSqiI8AMXRw==[/tex] 为消费者的无差异曲线, [tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex] 点为效用最大化的均衡点。已知商品 1 的价格 [tex=2.857x1.286]nNdqhQBSa0iHntnC7oWJAA==[/tex] 元。[br][/br](1) 求消费者的收入;[br][/br](2) 求商品 2 的价格 [tex=1.071x1.286]MXGlv89djB6Gq/oJiLE/Vg==[/tex];[br][/br](3) 写出预算线方程;[br][/br](4) 求预算线的斜率;[br][/br](5) 求 [tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex] 点的 [tex=3.214x1.286]WW0aXbMn+2Lwqr+8RE3jlg==[/tex] 的值。[br][/br][img=375x229]17f4eb147afd3be.png[/img]
- 设采样系统如题9. 8图所示,其中采样周期[tex=2.357x1.0]H8LmHwCpGqYY5kuaC76AkA==[/tex][br][/br](1)求系统开环脉冲传递函数 [tex=2.071x1.357]eyQXdotwzQBLROluYM4g2g==[/tex][br][/br](2) 求系统闭环脉冲传递函数[tex=2.0x1.357]xBuE1ZHeQa1mIyiLTpaxTg==[/tex](3) 求使系统稳定的[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]值。[br][/br][img=603x180]17972f8c9bdc096.png[/img]