证明:[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是半正定的充分必要条件为它的特征值全非负.
举一反三
- 证明:[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是半正定的充分必要条件为[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的所有主子式全非负.
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为实对称矩阵, 证明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]正定 (半正定) 的充分必要条件是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征值全大于 (大于等于)零.
- [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征值均为正数的充要条件是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为正定方阵.
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称正定矩阵, 证明[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个互相正交的特征向量[tex=6.857x1.5]1OLDM79a1WnqWkErUXr8P604kgpkEAoDOqD5+BNAsbem5zwUCkpRL26F98rz8e/f[/tex]关于[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]共轭.
- 证明:如果[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级正定矩阵,[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级实对称矩阵,则存在一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级实可逆矩阵[tex=0.714x1.0]YiLkHgl7MlxE+QjUplQUKA==[/tex],使得[tex=2.714x1.214]lzPCT5yF+LgDKywlyUEMYQ==[/tex]与[tex=2.714x1.214]Aq6HwIZW7B8JTiPGula26g==[/tex]都是对角矩阵.