证明:[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是半正定的充分必要条件为[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的所有主子式全非负.
举一反三
- 证明:[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是半正定的充分必要条件为它的特征值全非负.
- 证明:实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是正定的充分必要条件为[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的所有主子式全大于零.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 求证:(1) 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可逆, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为正定阵的充要条件是对所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定阵 [tex=6.571x1.357]pwQb9ceT2+qsbXbi+6dIl/jgx7HDqG8OMKcZZrhVcXy6+JovSSXitpjCbh6SDQEN[/tex](2) [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为半正定阵的充要条件是对所有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶半正定阵 [tex=6.571x1.357]pwQb9ceT2+qsbXbi+6dIl8wUbDZMgCOnJA1lQifZKR+Dh2C+JkyFhRzqn66dyW91[/tex]
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为实对称矩阵, 证明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]正定 (半正定) 的充分必要条件是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的特征值全大于 (大于等于)零.
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称正定矩阵, 证明[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个互相正交的特征向量[tex=6.857x1.5]1OLDM79a1WnqWkErUXr8P604kgpkEAoDOqD5+BNAsbem5zwUCkpRL26F98rz8e/f[/tex]关于[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]共轭.