举一反三
- 求正交矩阵[tex=0.929x1.214]RjlejK6D6JSwVAeYdCSJQw==[/tex]使[tex=3.0x1.214]3LPwI+Ms8uWX4W/wZJKnrQ==[/tex] 为对角形, 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为下列矩阵:[tex=8.643x3.929]jcCMHflCR8OS9TosV6N5vIzc2tkKBN1JF0Bu2m5z5oXb26CJagCEXy2U05qLmCZ6L7GdSVFLbl7gy/oTb7iFB1QaiTJ4QSrKJEirM7t5Z5uwATJk+MHibuktErDnr2k7[/tex]
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵,证明 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为正交阵的充要条件是 [tex=1.143x1.071]dlHppezehhhJt6WmQH9aoA==[/tex] 为正交阵.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶正定实对称矩阵, 满足 [tex=4.071x1.143]23C06xV+qahUl1T3xcoZnwRQpH8YtXCwkd9Ub4sG38M=[/tex],证明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可对角化.
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称正定矩阵, 证明[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个互相正交的特征向量[tex=6.857x1.5]1OLDM79a1WnqWkErUXr8P604kgpkEAoDOqD5+BNAsbem5zwUCkpRL26F98rz8e/f[/tex]关于[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]共轭.
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]级正交矩阵,证明:如果[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有特征值,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值是1或[tex=1.286x1.143]Mj6+lbt3rBoas+xQLVX/oA==[/tex].
内容
- 0
设矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]都是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵,且[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为对称矩阵,证明: [tex=2.643x1.214]RXNYPSeOxp2KYb7ZxErkfA==[/tex]也是对称矩阵。
- 1
若[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足[tex=5.714x1.357]gHrEoMXRoYD6ylIB8k+Dmg==[/tex],则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的特征值为[input=type:blank,size:4][/input]。
- 2
设 4 阶方阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]满足条件[tex=13.429x1.571]pNXwj7dxoGbcprO3/HATinbMcrt8sC5y1uPd3TRH6ssCiv8WtIXVXb9cSHXuJP20[/tex], 其中[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]为 4 阶单位矩阵,求[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的伴随矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有一个特征值。
- 3
设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 若存在 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实矩阵 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex], 使 [tex=4.143x1.286]YCUl/vNcR5SNlwwslg9Jhb5CY//bqvCw+mSVvBQx12Q=[/tex] 是正定阵, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为非异阵.
- 4
设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵,[tex=6.357x1.214]ktGtmiDKstx7m1f25N9jwZT5aYsjOrhIKRDobbavw6Q=[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个特征值,求行列式 [tex=3.357x1.357]m48DvRt0hjjMuVqGpYAvJg==[/tex] 的值.