举一反三
- 若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?
- 判断下列命题是否为真:(1)[tex=3.643x1.357]/5abqJjwKZ1qr+6hsVFF5EBvfq3ggOFNlHMClz0h9nk=[/tex](2)[tex=2.929x1.357]rGJpyjIjJpbcoBTWxP0Jiw==[/tex](3)[tex=4.5x1.357]2wycHMoqU83MyEp17iBils58bR7YLuCTI2G9NVAdlfY=[/tex](4)[tex=5.214x1.357]CTz2gu+IIm1GgNmYMGaduCRtA41wnW4WqwRWwEhq6aA=[/tex](5)[tex=4.857x1.357]1DcE2BMMOaZhTuxR/mjgsboXxfg5ET59Dp4I/jjEDuw=[/tex](6)[tex=4.643x1.357]BSryrsQYOvTP2hTWRu6t4nAuJwlSs4L9jaq70EpB+Us=[/tex](7)若[tex=6.0x1.357]y0IZLUnBO88nR8WBZYvd7QXv5S1OMINV5cQNzPyiyAc=[/tex],则[tex=3.429x1.357]1brfPwTkVVIX4GfoMIUskA==[/tex](8)若[tex=7.643x1.357]MhLfJXZnhbXiB0x3oNtFzThV4Y1mJxe1VYr7PkJE/T6hmTD3WWp+UxbNwvUQ6DHk[/tex],则[tex=4.143x1.357]LZUA94ISo1po5HWsOVeBCjo0rMvj7uw3bGw5HiZenrI=[/tex]
- 设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上二阶可导,且对任意[tex=3.429x1.357]WwD1rvmcLUz5NmrhSa2JkQ==[/tex],[tex=4.214x1.429]79SmwT+8J9VTqKDgDEyFq1vVHcFaA72erzSksXrlPTQ=[/tex],[tex=5.571x1.357]tuwRu6EZLCuuzT4wtCfHiA==[/tex].证明:当[tex=3.429x1.357]WwD1rvmcLUz5NmrhSa2JkQ==[/tex]时,[tex=3.714x1.357]mXvJ+AdSx51b9k85jFWYgw==[/tex].
- 设函数[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在点[tex=1.929x0.786]qBxW1Wco1uHB6W+VkCK3Kw==[/tex]处可导,则函数[tex=2.429x1.357]9cM+yXmMqe9Sxnqa+l2Eqg==[/tex]在点[tex=1.929x0.786]qBxW1Wco1uHB6W+VkCK3Kw==[/tex]处不可导的充分条件是 未知类型:{'options': ['[tex=3.143x1.357]E5AUvOOYCnpTRWX493K7fQ==[/tex],且[tex=3.429x1.429]juhGKpKYVWMENuClDrEvp8Hrkq74GfhG1bVrRi5KhxY=[/tex]', '[tex=3.143x1.357]E5AUvOOYCnpTRWX493K7fQ==[/tex],且[tex=4.0x1.429]B9nTa3QuDTLw/pSatPVGiNexWqYcOJXHovv8ZtWKMnc=[/tex]', '[tex=3.643x1.357]7ialSGgtd2YgqZew1RQd0w==[/tex],且[tex=4.0x1.429]gvhP1AY7iQv59UiRiUjPvvU+eSzVq48eXIp057thEn8=[/tex]', '[tex=3.643x1.357]tOuVFRflAteCgvb7gGHBlA==[/tex],且[tex=4.0x1.429]Lp8KhkNyKz5e0lhVFUWU01qbIQX0AoEACKUhayeOBkE=[/tex]'], 'type': 102}
- 求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?
内容
- 0
设[tex=3.429x1.357]Z36AEPLbx4JfyrHPfLY1gg==[/tex]具有性质F,[tex=3.571x1.357]+06OwmLRwFoUAk4Z/SZg7Q==[/tex]具有性质G,命题“对所有x而言,若x有性质F,则x就有性质G”的符号化形式为
- 1
若多项式函数列[tex=3.429x1.357]rs1NJeb245xTnFm4wHvOkDLjwQTKVfHV8LjLj/z71ck=[/tex] 在 [tex=4.786x1.357]WafKDm5071vVz9IYJgBhj8LbdrnQF2M50OcMtr5E7Yg=[/tex]上一致收敛于函数f(x),则f(x)必是多项式函数。
- 2
若:(1)函数 f(x)在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]有导数,而函数g(x)在此点没有导数;(2)函数f(x)和g(x)二者在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]都没有导数,可否断定它们的和[tex=7.214x1.357]oX568MWmpJJk2c1dN8FEzQ==[/tex]在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数?
- 3
设h为X上函数,证明下列两个条件等价,(1)h为一单射(2)对任意X上的函数[tex=5.429x1.214]3BrfPgAFe5dbHQTMAYnbS+118W4YAj6CiW06EKMaxNI=[/tex]蕴涵[tex=1.786x1.214]pxzkG5OdsKT9CiCwC5OvPQ==[/tex]
- 4
设函数[tex=17.0x1.5]3Qc8zAEodU/NXu/GRWXrWjA+U7BzHxYC9q1rJiEDxXAtMY/8hbCNs0nDXw4B8DhUK+HRgcuSMWGXl6kpCZNjFA==[/tex]([tex=5.643x1.0]O9qGQWb1YzoOCaRetv+AwVqYli7CsYhCf8ic6LfFqw8=[/tex]为实常数),证明: (1). 若[tex=3.071x1.214]Iigx1lsMFuJFc9Rt9KemEw==[/tex] 且 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 为奇数,则方程 [tex=3.143x1.357]GaUU+prLnDPZRkTgFIz5aw==[/tex] 至少有一负根。 (2). 若 [tex=3.071x1.214]b7/onK93Rg693Rvz+06n0Q==[/tex] 且 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 为奇数,则方程 [tex=3.143x1.357]GaUU+prLnDPZRkTgFIz5aw==[/tex] 至少有一正根。 (3). 若 [tex=3.071x1.214]b7/onK93Rg693Rvz+06n0Q==[/tex] 且 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 为偶数,则方程 [tex=3.143x1.357]GaUU+prLnDPZRkTgFIz5aw==[/tex] 至少有一个正根和一个负根。