证明:若函数[tex=1.857x1.286]i5Y5gkgMKfks2xZNlrPnCQ==[/tex]是单调增加的下凸函数,函数[tex=3.786x1.286]FfkU0aEgUg6VtDrNSvCK3/ywBD2rWusMYNLAjYarKQ8=[/tex]是下凸函数, 则函数[tex=3.071x1.286]3F6pLySJYtLh3Ld+L2QrnGuY3OHZykltV35erJ4xfko=[/tex]也是下凸函数。
举一反三
- 证明:(1)设f,g都是I上的凸函数,则αf+βg也是I上的凸函数,其中α与β为正常数;(2)设f,g是I上的非负凸函数,并且f与g 在I上同是单调增加(减少)的,则fg 是I上的凸函数;(3)设[tex=3.929x1.214]wx/gnkL43nZo3pQ4rVjDtvw4sL+RFbzA1z5uqKh/Z3M=[/tex]与[tex=4.0x1.214]T4XYlhKiYsCgkCgbr1ROWMcAb1W7YkiCRoQUKpDh5Wo=[/tex]都是凸函数,并且g单调增加,则[tex=1.929x1.214]HEPu09Z4xi8MFdLZb/YsNw==[/tex]是[tex=0.857x1.214]of4eXv3u2qiwu36rna6/yw==[/tex]上的凸函数.
- 函数f(x)=xlnx在(0,+∞)上是()。 A: 单调增函数 B: 单调减函数 C: 上凸函数 D: 下凸函数
- 证明:若函数[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]在[tex=0.929x1.286]D0SjfA4tfMuU4WE/2xYU+g==[/tex]是下凸,且有界,则[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]是常数函数。
- 若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?
- 设函数f(x)在[tex=3.286x1.357]64m0xE4nFlaKGIakApV0PA==[/tex]上连续,且有f(0)=0及f'(x)单调增,证明:在[tex=3.5x1.357]vgrW1/jK/GZ1TOWaPFIQWA==[/tex]上函数[tex=5.071x2.429]KmCvFjqAEA9O51+9erVGP+KtDDqVtXZQWqxj1eiTO5k=[/tex]是单调增的。