举一反三
- 一辆飞机场的交通车载有 25 名乘客途经 9 个站,每位乘客都等可能在这 9 个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,记 [tex=1.071x1.214]xeonBC5gK1NX8OhFCxUZFA==[/tex] 表示第 [tex=0.357x1.0]O88k7AtkDgTC9kv/8dY0lg==[/tex] 站下车的乘客数, [tex=0.857x1.214]qgWdCI5tx/Xw+ClInqPMNw==[/tex] 定义为[p=align:center][tex=10.0x3.643]AoeuRCpzmI4hvwjNl0VjujXIN6j8vmSzAOO20DQgHQquVRzvEHSEZ7Xn4sSPyEk3EHrbZQWOj2wASmFd9Jn6RQeg7WS4BOI3Su7WTGG79LT9VfUEuBWSwZtRG3pRtJk2[/tex][br][/br]
- 证明:两个矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的乘积的第[tex=0.357x1.0]O88k7AtkDgTC9kv/8dY0lg==[/tex]行等于[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的第[tex=0.357x1.0]O88k7AtkDgTC9kv/8dY0lg==[/tex]行右乘以 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex],第[tex=0.429x1.214]rmIPPJrP+tFN2kAYPlU/4g==[/tex]列等于[tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex]的第[tex=0.429x1.214]rmIPPJrP+tFN2kAYPlU/4g==[/tex]列左乘以[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]。
- 一辆机场大巴载有 25 名乘客途经 9 个站,每位乘客都等可能在这 9 站中任意一站下车(且不受其他乘客下车与否的影响),大巴车只在有乘客下车时才停车,求大巴车的停车次数的数学期望.
- 用一个邻接矩阵存储有向图[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex], 其第[tex=0.357x1.0]O88k7AtkDgTC9kv/8dY0lg==[/tex]行的所有元素之和等于顶点[tex=0.357x1.0]O88k7AtkDgTC9kv/8dY0lg==[/tex]的[input=type:blank,size:4][/input]。
- 一辆飞机场的交通车送25名乘客到9个站,假设每一位乘客都等可能地在任一站下车,并且他们下车与否相互独立,交通车只在有人下车的站才停,则交通车停车次数服从( )。
内容
- 0
若对可逆矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]施行“交换[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的第[tex=0.357x1.0]O88k7AtkDgTC9kv/8dY0lg==[/tex]行与第[tex=0.429x1.214]rmIPPJrP+tFN2kAYPlU/4g==[/tex]行”初等变换,则[tex=1.714x1.214]iQ/iEbsDm/5Je+BSznZxUQ==[/tex]相应地发生了什么变化?
- 1
设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵,将 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的第 [tex=0.357x1.0]O88k7AtkDgTC9kv/8dY0lg==[/tex]行与第 [tex=0.429x1.214]rmIPPJrP+tFN2kAYPlU/4g==[/tex] 行互换后,再将所得矩阵第 [tex=0.357x1.0]O88k7AtkDgTC9kv/8dY0lg==[/tex]列与第 [tex=0.429x1.214]rmIPPJrP+tFN2kAYPlU/4g==[/tex] 列互换得到矩阵 [tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex] ,下面有关矩阵[tex=0.929x1.0]k/Cj2RiKlvftjUNiBSOakw==[/tex], [tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex]的五个结论:[tex=1.0x1.286]fchM0T/Am7PJb7mBKK/j4g==[/tex][tex=0.929x1.0]k/Cj2RiKlvftjUNiBSOakw==[/tex]与 [tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex]相似;[tex=1.0x1.286]gu2iAs6g5+HWYTGZwOTMpg==[/tex][tex=3.643x1.357]MzmmROCjjtWxSw9nY2Sa7EzguI4Ba18TvIijucjkMy00FBE667WnCJMQh862mXLw[/tex];[tex=1.0x1.286]IFiLHlr8m45uD56+BGHjGw==[/tex][tex=5.0x1.357]/+ExSMuVkJJOwl5RqJ9UsWDRu0t3jERp2umxCGDvBTYFGr0/jWiz3clFS7jjb2v7j3x+HWavVnVRhc3Jg7epbw==[/tex][tex=1.0x1.286]AbA3VOQeKyGoU7ALWl3CBg==[/tex]存在[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶可逆矩阵 [tex=1.714x1.214]Se7Z7OxYfA0Y1oKcIdKVGg==[/tex], 使得[tex=3.786x1.214]5sjVWDGck7HbiPV77rlWAA==[/tex];[tex=1.0x1.286]FSUKm3Kw7zYhdt55HOEAfw==[/tex]存在正交矩阵[tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex], 使得 [tex=4.429x1.429]HhEzjKg1oPBRXjGQMpmCr3Ukix5Ge6GZD3fL1eTdRBI=[/tex].其中正确的结论个数为 A: 2 个 B: 3个 C: 4 个 D: 5个
- 2
若可逆矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]作下列变化,则[tex=1.714x1.214]iQ/iEbsDm/5Je+BSznZxUQ==[/tex]相应地有怎样的变化? [tex=2.143x1.214]WduuySCfbbSEY25SqqAOSA==[/tex]时,[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]中第[tex=0.429x1.214]rmIPPJrP+tFN2kAYPlU/4g==[/tex]行乘上数[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]加到第[tex=0.357x1.0]O88k7AtkDgTC9kv/8dY0lg==[/tex]行.
- 3
设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶可逆矩阵, [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 是由 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的第 [tex=0.357x1.0]O88k7AtkDgTC9kv/8dY0lg==[/tex]行乘以数 [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]加到第[tex=0.429x1.214]rmIPPJrP+tFN2kAYPlU/4g==[/tex] 行得到的矩阵。证明:求 [tex=1.571x1.0]mCjAngcIqtveplNftuY0BQ==[/tex]
- 4
有[tex=4.5x1.214]GK+NSLRH8xaRJJ8iGzp8YhaLb1JrN4SkQAUcZkIx4uk=[/tex]共[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个元素进行排列,若第[tex=0.357x1.0]O88k7AtkDgTC9kv/8dY0lg==[/tex]个元素都没有排在第[tex=0.357x1.0]O88k7AtkDgTC9kv/8dY0lg==[/tex]位置[tex=6.0x1.357]GW22REPGzuB4cl1ds3utd/SyertkZlccWCy/3Y3+UbA=[/tex],称这样的排列为错排[tex=6.643x1.357]wqjQEvqIARG10HaYqjD3Eg==[/tex]。 利用[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个集合的容斥原理计算错排的个数。