已知[img=72x38]17e0af0f8158652.png[/img]在[img=67x35]17e0af0f8b30d06.png[/img]可导,且方程f(x)=0在[img=72x38]17e0af0f9579475.png[/img]有两个不同的根[img=42x31]17e0af0f9ea4744.png[/img]与[img=49x38]17e0af0fa806341.png[/img],那么在[img=72x38]17e0af0f9579475.png[/img]内( )某点满足[img=151x88]17e0af0fb1970b7.png[/img]
A: 必有
B: 可能有
C: 没有
D: 无法确定
A: 必有
B: 可能有
C: 没有
D: 无法确定
举一反三
- f(x)在[0,1]上有连续的二阶导数,f(0)=f(1)=0,任意x属于[0,...715af2ac3f81f8.png"]
- 设f(x)在|x|>;a上有定义,若___________,使得当|x|>;X时,恒有|f(x)-A|<;ε, 称[img=57x14]17de8197cad5b33.png[/img]时函数f(x)有极限A,记作[img=33x32]17de8197d6e5e38.png[/img][img=71x25]17de8197e309ab5.png[/img]。 A: 存在ε>;0, 存在X>;0 B: 任意ε>;0, 存在X>;0 C: 存在ε>;0, 任意X>;0 D: 任意ε>;0, 任意X>;0
- 设f(x)在(0,+∞)二阶可导,满足f(0)=0,f(x)在x=0处可导,f"(x)<0(x>0),又设b>a>0,则a<x<b时恒有 A: af(x)>xf(a). B: bf(x)>xf(b). C: xf(x)>bf(b). D: xf(x)>af(a).
- 设f(x)在|x|>a上有定义,若___________,使得当|x|>X时,恒有|f(x)-A|<ε,,则称[img=57x14]1803265766c8afb.png[/img]时函数f(x)有极限A,记作[img=33x32]180326576f3a987.png[/img][img=71x25]180326577770c01.png[/img]。 A: 存在ε>0, 存在X>0 B: 任意ε>0, 存在X>0 C: 存在ε>0, 任意X>0 D: 任意ε>0, 任意X>0
- 定义在(0,+∞)上的可导函数f(x)满足xf′(x)-f(x)<0,则对任意a,b∈(0,+∞)且a>b,有() A: af(a)>bf(b) B: bf(a)>af(b) C: af(a)<bf(b) D: bf(a)<af(b)