19. 某电子元件使用寿命服从参数为0.001(单位:h)的指数分布,求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的分布函数并计算概率[tex=9.143x1.357]tcikl7O40uA5SbVW3up4o+9PsScWueEfBg0ytLhNgCx15urYIw48/KiobdR7eNFk[/tex]以及使用 500 小时没有车的条件下, 再继续使用 100 小时都完好的概率.
举一反三
- 设电子元件的寿命时间 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] (单位: 小时) 服从参数 [tex=4.143x1.0]sCi5x95n/M0eDU+bkmAFhO0WP1baiMoqpf2mhtq2r1c=[/tex] 的指数分布,今独立测试 [tex=1.929x1.0]Ahmfdo6bCmnogYpp4NRgvg==[/tex] 个元件,记录它们的失效时间. 求:(1)没有元件在 800 小时之前失效的概率;(2)没有元件最后超过 3000 小时的概率.
- 某电器元件的使用寿命 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 服从参数 [tex=3.786x2.357]fHzj82+X2bjqQXwrW9+YLPpo5TK+/EPjHEuZQO8uNlY=[/tex] 的指数分布,单位为小时.(1) 任取一个这种元件,求能正常使用 1000 小时以上的概率;(2) 求这种元件正常使用 1000 小时以后,还能正常使用 1000 小时以上的概率;(3)比较前面的结果,你能得出什么结论?
- 设某电子元件的使用寿命 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]( 单位 : 小时 ) 服从参数 [tex=3.286x2.357]fHzj82+X2bjqQXwrW9+YLJjpVlPEcZ49sSQO2V8wYJw=[/tex] 的指数分布. 现在某种仪器上使用三个这种电子元件,采用并联方式,即它们工作时相互独立. 求(1) 一个元件使用时间在 200 小时以上的概率;(2) 三个元件中至少有两个使用时间在 200 小时以上的概率.
- 设某元件的使用寿命[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex](单位:小时)服从参数[tex=3.643x1.0]8t6dKE6Cg2F7WoZLQYwyMw==[/tex]的指数分布,求:(1)该元件在使用500小时内损坏的概率.(2)该元件在使用1000小时后未损坏的概率.(3)该元件在使用500小时未损坏的情况下,可以再使用500小时的概率.
- 已知离散型随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率分布为[img=397x83]178ee6aa0d1a25e.png[/img](1) 写出[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的分布函数[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex];(2) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的数学期望和方差.