如果y=u2,u=logax,将y表示成x所围函数。
举一反三
- 将y表示成x的函数,求y=10u,u=1+x2.
- 己知,u=2x3+5,将y表示成x的函数.
- 函数 y = e^(sinx^2)是由哪几个函数复合而成? A: y=e^u, u=sinv, v=x B: y=e^u, u=v^2, v=sinx C: y=e^u, u=sinv, v=x^2 D: y=e^u, u=sinx
- 求解偏微分方程[img=178x28]18030731a73d552.png[/img], 应用的语句是 A: DSolve[(x^2+y^2)D[u,x]+x yD[u,y]==0,u,{x,y}] B: DSolve[(x^2+y^2)Dt[u[x,y],x]+xyDt[u[x,y],y]==0,u[x,y],{x,y}] C: DSolve[(x^2+y^2)D[u[x,y],x]+xyD[u[x,y],y]==0,u[x,y]] D: DSolve[(x^2+y^2)D[u[x,y],x]+xyD[u[x,y],y]==0,u[x,y],{x,y}]
- 设函数u1=u1(x,y,z)与u2=u2(x,y,z)均满足拉普拉斯方程△u=0.试证明函数v=u1(x,y,z)+(x2+y2+z2)u2(x,y,z)满足方程△(△v)=0.