设函数u1=u1(x,y,z)与u2=u2(x,y,z)均满足拉普拉斯方程△u=0.试证明函数v=u1(x,y,z)+(x2+y2+z2)u2(x,y,z)满足方程△(△v)=0.
举一反三
- 设\(z = {u^2}{\rm{ + }}{v^2}\),\(u = x + y\),\(v = x - y\),则\( { { \partial z} \over {\partial x}}=\) A: \(4y\) B: \(4x\) C: \(2(x+y)\) D: \(2(x-y)\)
- 设z=f(u),而u=u(x,y)满足u=y+xφ(u)。若f和φ有连续导数,u存在偏导数,且xφ′(u)≠1,证明:∂z/∂x=φ(u)∂z/∂y。
- 对公式∀x(P(x,y) →Q(x,z)) ∨∃zR(x,z)使用代入和换名规则后得到的公式为 A: ∀x(P(x,y) →Q(x,z)) ∨∃vR(x,v) B: ∀u(P(u,y) →Q(u,z)) ∨∃zR(x,z) C: ∀u(P(u,y) →Q(u,z)) ∨∃vR(x,v) D: ∀u(P(u,y) →Q(u,z)) ∨∃vR(u,v)
- 设\(z = u{e^v}\),\(u = x + y\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}(1 + xy + {y^2})\) B: \({e^{xy}}(1 + xy + {y^3})\) C: \({e^{xy}}(x+ xy + {y^2})\) D: \({e^{xy}}(y+ xy + {y^2})\)
- 设\(z = u{e^v}\),\(u = {x^2} + {y^2}\),\(v = xy\),则\( { { \partial z} \over {\partial x}}=\) A: \({e^{xy}}({x^2}y + {y^3} + 2x)\) B: \({e^{xy}}({x}y^2 + {y^3} + 2x)\) C: \({e^{xy}}({x}y + {y^3} + 2x)\) D: \({e^{xy}}({x^2}y + {y^2} + 2x)\)