设p(x)是数域F上的不可约多项式,若p(x)在F中有根,则p(x)的次数是()。
举一反三
- p???x)在F[x]上不可约,则p(x)可以分解成两个次数比p(x)小的多项式的乘积。
- 设$p(x),f(x)$是数域$P$上多项式,且$p(x)$不可约,则下述断言正确的是( )。 A: 若$p(x)$是$f(x)$的$k$重因式,则$p(x)$是$f^{(k)}(x)$的因式; B: 若$p(x)$是$f^{'}(x)$的$k-1$重因式,则$p(x)$是$f(x)$的$k$重因式; C: 若$p(x)$是$f^{(2)}(x)$的$k-2$重因式,则$p(x)$是$f(x)$的$k$重因式; D: 若$p(x)$是$f^{'}(x)$的$k-1$重因式,且$p(x)$是$f(x)$的因式,则$p(x)$是$f(x)$的$k$重因式。
- 若p(x)是F(x)中次数大于0的不可约多项式,那么可以得到()。 A: (p(x),f(x))=1或者p(x)|f(x)) B: (p(x),f(x))=1或者p(x)|f(x))或者,p(x)f(x)=0 C: 只能有p(x)|f(x)) D: 只能有(p(x),f(x))=1
- 若p(x)是F(x)中次数大于0的不可约多项式,那么可以得到下列哪些结论?() A: 只能有(p(x),f(x))=1 B: 只能有(p(x)|f(x)) C: (p(x),f(x))=1或者(p(x)|f(x))或者,p(x)f(x)=0 D: (p(x),f(x))=1或者(p(x)|f(x))
- 设$f(x)$是数域$F$上的多项式,$K$是包含$F$的数域,则下面断言正确的是()。 A: 若$f(x)$在$F$上不可约,则$f(x)$在$K$上也不可约; B: 若$f(x)$在$K$上不可约,则$f(x)$在$F$上也不可约; C: 若$f(x)$在$K$上可约,则$f(x)$在$F$上也可约; D: $f(x)$的可约性与所在数域无关。