feff设二元函数z=f(x,y),则二元函数z=f(x,y)在(x,y)处的偏导数连续是z=f(x,y)在(x,y)处可微的
举一反三
- 函数z=f(x,y)在(x,y)处可微,则函数z=f(x,y)在(x,y)两个偏导数不一定存在
- 【多选题】对于二元函数z=f(x,y)在点(x,y)的可导性与可微性,以下说法正确的是 (2.0分) A. 二元函数z=f(x,y)在点(x,y)的有偏导数必然导致该函数在点(x,y)处可微分; B. 二元函数z=f(x,y)在点(x,y)的偏导数全部连续必然导致该函数在点(x,y)处可微分; C. 二元函数z=f(x,y)在点(x,y)的可微分必然导致该函数在点(x,y)处有偏导数;
- 函数z=f(x,y)在点(x,y)处可微,则z=f(x,y)在点(x,y)处连续( )
- 设f(u,v)是二元可微函数,z=f(y/x,x/y),则x∂z/∂x-y∂z/∂y=____。
- 设z=z(x,y), y=y(x,z), x=x(y,z)都是由方程 F (x,y,z)=0确定的具有一阶连续偏导数的二元函数,则[img=102x47]18036fdb6dacf56.png[/img]