通过以下命令绘制正弦函数曲线,完成后曲线更为光滑的是( )。>> t1=linspace(0, 2*pi, 10);>> t2=linspace(0, 2*pi, 20);>> t3=linspace(0, 2*pi, 100);>> plot(t1, sin(t1), t2,sin(t2)+1, t3, sin(t3)+2)
A: t1=linspace(0, 2*pi, 10)
B: t2=linspace(0, 2*pi, 20)
C: t3=linspace(0, 2*pi, 100)
D: 都一样
A: t1=linspace(0, 2*pi, 10)
B: t2=linspace(0, 2*pi, 20)
C: t3=linspace(0, 2*pi, 100)
D: 都一样
举一反三
- 计算曲线积分\({\oint_L {({x^2} + {y^2})} ^3}ds\),其中\(L\)为圆周\(x = a\cos t,y = a\sin t(0 \le t \le 2\pi )\)。 A: \(2\pi {a^7}\) B: \(2\pi {a^6}\) C: \(2\pi {a^5}\) D: \(2\pi {a^8}\)
- 已知\(L\)为圆周 \(x = a\cos t,y = a\sin t(0 \le t \le 2\pi )\),则\({\oint_L {({x^2} + {y^2})} ^n}ds{\rm{ = }}\) ( ). A: \(2\pi {a^{2n + 1}}\) B: \(2\pi {a^{2n - 1}}\) C: \(\pi {a^{2n + 1}}\) D: \(\pi {a^{2n - 1}}\)
- 曲线$\left\{ \matrix{ {x^2} + {y^2} + {z^2} = 9 \cr y = x \cr} \right.$的参数方程为( ). A: $$\left\{ \matrix{ x = \sqrt 3 \cos t \cr y = \sqrt 3 \cos t \cr z = \sqrt 3 \sin t \cr} \right.(0 \le t \le 2\pi )$$ B: $$\left\{ \matrix{ x = {3 \over {\sqrt 2 }}\cos t\cr y = {3 \over {\sqrt 2 }}\cos t \cr z = 3\sin t \cr} \right.(0 \le t \le 2\pi )$$ C: $$\left\{ \matrix{ x = \cos t\cr y = \cos t\cr z = \sin t \cr} \right.(0 \le t \le 2\pi )$$ D: $$\left\{ \matrix{ x = {{\sqrt 3 } \over 3}\cos t\cr y = {{\sqrt 3 } \over 3}\cos t \cr z = {{\sqrt 3 } \over 3}\sin t\cr} \right.(0 \le t \le 2\pi )$$
- 已知“syms x y a t r; x=r*cos(t); y=r*sin(t); f=sqrt(a^2-x^2-y^2); r1=0; r2=a; t1=0; t2=2*pi; f1=int(f*r,r,r1,r2); I=int(f1,t,t1,t2)”,则下列说法正确的是【】
- 产生周期为1的三角波信号,正确的代码是 A: t=0:1/1000:5;y=sawtooth(2*pi*t,0.5);号,正确的代码是 B: t=0:1/1000:5;y=sawtooth(2*pi*10*t,0.5);,正确的代码是 C: t=0:1/1000:5;y=square(2*pi*t,0.5);� D: t=0:1/1000:5;y=square(2*pi*10*t,0.5);