A: t1=linspace(0, 2*pi, 10)
B: t2=linspace(0, 2*pi, 20)
C: t3=linspace(0, 2*pi, 100)
D: 都一样
举一反三
- 计算曲线积分\({\oint_L {({x^2} + {y^2})} ^3}ds\),其中\(L\)为圆周\(x = a\cos t,y = a\sin t(0 \le t \le 2\pi )\)。 A: \(2\pi {a^7}\) B: \(2\pi {a^6}\) C: \(2\pi {a^5}\) D: \(2\pi {a^8}\)
- 已知\(L\)为圆周 \(x = a\cos t,y = a\sin t(0 \le t \le 2\pi )\),则\({\oint_L {({x^2} + {y^2})} ^n}ds{\rm{ = }}\) ( ). A: \(2\pi {a^{2n + 1}}\) B: \(2\pi {a^{2n - 1}}\) C: \(\pi {a^{2n + 1}}\) D: \(\pi {a^{2n - 1}}\)
- 曲线$\left\{ \matrix{ {x^2} + {y^2} + {z^2} = 9 \cr y = x \cr} \right.$的参数方程为( ). A: $$\left\{ \matrix{ x = \sqrt 3 \cos t \cr y = \sqrt 3 \cos t \cr z = \sqrt 3 \sin t \cr} \right.(0 \le t \le 2\pi )$$ B: $$\left\{ \matrix{ x = {3 \over {\sqrt 2 }}\cos t\cr y = {3 \over {\sqrt 2 }}\cos t \cr z = 3\sin t \cr} \right.(0 \le t \le 2\pi )$$ C: $$\left\{ \matrix{ x = \cos t\cr y = \cos t\cr z = \sin t \cr} \right.(0 \le t \le 2\pi )$$ D: $$\left\{ \matrix{ x = {{\sqrt 3 } \over 3}\cos t\cr y = {{\sqrt 3 } \over 3}\cos t \cr z = {{\sqrt 3 } \over 3}\sin t\cr} \right.(0 \le t \le 2\pi )$$
- 已知“syms x y a t r; x=r*cos(t); y=r*sin(t); f=sqrt(a^2-x^2-y^2); r1=0; r2=a; t1=0; t2=2*pi; f1=int(f*r,r,r1,r2); I=int(f1,t,t1,t2)”,则下列说法正确的是【】
- 产生周期为1的三角波信号,正确的代码是 A: t=0:1/1000:5;y=sawtooth(2*pi*t,0.5);号,正确的代码是 B: t=0:1/1000:5;y=sawtooth(2*pi*10*t,0.5);,正确的代码是 C: t=0:1/1000:5;y=square(2*pi*t,0.5);� D: t=0:1/1000:5;y=square(2*pi*10*t,0.5);
内容
- 0
已知“syms x y z t r; x=r*cos(t); y=r*sin(t); f=x+y+z; r1=0; r2=1; z1=r^2; z2=1; t1=0; t2=2*pi; f1=int(f*r,z,z1,z2); f2=int(f1,r,r1,r2); A=int(f2,t,t1,t2)”,则下列说法正确的是【】
- 1
已知“syms x y z t a b; x=a*cos(t); y=a*sin(t); z=3*t; dx=diff(x,'t'); dy=diff(y,'t'); dz=diff(z,'t'); f=y*dx-x*dy+(x+y+z)*dz; t1=0; t2=2*pi; W=int(f,t,t1,t2)”,则正确的说法是【】
- 2
曲线$x={{\sin }^{2}}t, y=\sin t\cos t, z={{\cos }^{2}}t$在$t=\frac{\text{ }\!\!\pi\!\!\text{ }}{2}$所对应的点处的切向向量为 A: $(0,-1,1)$ B: $(1,-1,0)$ C: $(0,1,1)$ D: $(0,-1,0)$
- 3
经过以下代码,t的结果是 t1=(1, 'a')[br][/br] t2=(2, 'b') t = t1 + t2 A: (3,'ab') B: ((1,'a'),(2,'b')) C: (1,'a',2,'b') D: (3,'a','b')
- 4
Ifthesquarerootof<em>t</em>isarealnumber,isthesquarerootof<em>t</em>positive?<br/>(1)<em>t</em>><em>0</em><br/>(2)<em>t<sup>2</sup></em>><em>0</em>