证明方程x^7+x^5+x^3+1=0有且仅有一个实根
举一反三
- 方程\( {x^3} + x - 1 = 0 \)有( )个实根。 A: 3 B: 2 C: 1 D: 0
- 函数f(x)=(x-1)(x-2)(x-3)(x-4)的导数对应的方程有()个实根, 并指出它们所在的区间. A: f′(x)=0有三个实根,且x1∈(1, 2),x2∈(2, 3),x3∈(3, 4). B: f′(x)=0有两个实根,且x1∈(1, 2),x2∈(2, 3). C: f′(x)=0有一个实根,且x1∈(1, 2). D: f′(x)=0没有实根.
- 方程 \({x^3} + 3{x^2} - 1 = 0\) 在 \((0,1)\) 内有一个实根 .
- 若a<b时,可微函数f(x)有f(a)=f(b)=0,fˊ(a)<0,fˊ(b)<0,则方程fˊ(x)=0在(a,b)内() A: 无实根 B: 有且仅有一实根 C: 有且仅有二实根 D: 至少有二实根
- 设f(x)在(a,b)内可微,且 f(a)=f(b)=0,f’(a)<0,f’(b)<0,则方程f’(x)=0在(a,b)内______. A: 没有实根 B: 有且仅有一个实根 C: 有且仅有两个不等实根 D: 至少有两个不等实根