设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 元集,[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 上可定义多少个不同的二元关系?其中有多少个二元关系是自反并且对称的?
举一反三
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 元集,[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 上可定义 [tex=1.286x1.286]sQKdLrp7K3FFAf9l2SSQKg==[/tex] 个不同的二元关系,其中有(1) 多少个自反的二元关系?(2) 多少个对称的二元关系?(3) 多少个反对称的二元关系?
- 设集合[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]中有[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]个元素,则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]上的二元关系有( )个,其中有( )个是[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]到[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的函数。
- 如果集[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]有[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个元素,问[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]共有多少个子集?[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的真子集有几个?
- 设[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是含有[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个元素的集合.[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]中含有[tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex]个元素的子集共有多少个?
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是由 4 个元素组成的集合,试问在[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 上可以定义多少个不同的等价关系?