称群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中元素[tex=3.786x1.214]sfy2nrDugnEJMhuNczpd9izk6oGEL5DbFUEdSVDltEM=[/tex]为元素[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]与[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]的换位元,证明:由 $G$ 中所有换位元生成的子群[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的一个正规子群;
举一反三
- 设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex] 为群, [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中的 2 阶元,证明 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中与[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]可交换的元素构成[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的子群.
- 举例说明, 如果 [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 是 [tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 的正规子群,[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex] 是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的正规子群, 则 [tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex] 不一定是 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 的正规子群.
- 设[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的一个子群,证明:[tex=0.857x1.0]+NBI8Pm2vVS+bGgOpHKyOA==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的特征子群,当且仅当对[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的每个自同构[tex=0.571x0.786]G/buLKOLYVDEKMZ76t752w==[/tex]都是[tex=3.786x1.357]/hUAIv2XJLX3YXBqW5nP/A==[/tex].
- 设[tex=0.857x1.0]aPLFPHMGSKDwulHSwLWugg==[/tex]是群[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的有限子群, [tex=2.786x1.357]gGafzCAY5HUDydhqr4pyuw==[/tex].假设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]只有一个阶为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的子群, 证明:[tex=0.857x1.0]h610M+sGyf59WggKwaDo1Q==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的正规子群.
- 设[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]是由6个元素构成的循环群,[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的一个生成元,则[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]有______个子群,[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]的生成元是______.