设正整数[tex=3.571x1.214]RXxqYH0QtB5nW5acjiXw4G06T9oZ9MahE7ILHUWFscg=[/tex]满足:[tex=14.429x1.429]nVhst1XyRCiuNltvxR7em2G66KLx4NF/qM1XAxDu7Zdf+uBt+5Lo0hFSWTEwAP62[/tex]。设[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]是元素为0或1的[tex=0.5x0.786]GWrvJtODhYOBa2bpkSPSFQ==[/tex]级矩阵,且[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]的每一行恰有[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]个元素是1,[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]的每两行的内积为[tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex]。令[tex=3.643x1.143]zTJJQSAZKEKhr9Z3oeus2t7/miq+VwoOLnInLxR8Q/I=[/tex]。证明:在有理数域上,[tex=2.643x1.0]fT683dkfEvkVM/DjzIfi6g==[/tex]。
举一反三
- 设正整数[tex=3.571x1.214]RXxqYH0QtB5nW5acjiXw4G06T9oZ9MahE7ILHUWFscg=[/tex]满足:[tex=14.429x1.429]nVhst1XyRCiuNltvxR7em2G66KLx4NF/qM1XAxDu7Zdf+uBt+5Lo0hFSWTEwAP62[/tex]。设[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]是元素为0或1的[tex=0.5x0.786]GWrvJtODhYOBa2bpkSPSFQ==[/tex]级矩阵,且[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]的每一行恰有[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]个元素是1,[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]的每两行的内积为[tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex]。令[tex=3.643x1.143]zTJJQSAZKEKhr9Z3oeus2t7/miq+VwoOLnInLxR8Q/I=[/tex]。证明:在有理数域上,[tex=11.643x2.786]075gCzZzsMRb6HYXYk9X97XGw6HzwhJ1nVLypNrRA6lbbyjaY30sYXkb71uBn6BESJLsaof3F7OB+LJsu6N5YplmjLqFWFllN1MyTXeClrBMFUJYLhmez1nvwCA8b3oUV3oH1rs9BxdZVtIly9+R4A4IXOaHw7ugogZk9nlAzyR7k3bgmaGvAUk7CR4VEg3G[/tex]。
- 设正整数[tex=3.571x1.214]RXxqYH0QtB5nW5acjiXw4G06T9oZ9MahE7ILHUWFscg=[/tex]满足:[tex=14.429x1.429]nVhst1XyRCiuNltvxR7em2G66KLx4NF/qM1XAxDu7Zdf+uBt+5Lo0hFSWTEwAP62[/tex]。设[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]是元素为0或1的[tex=0.5x0.786]GWrvJtODhYOBa2bpkSPSFQ==[/tex]级矩阵,且[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]的每一行恰有[tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]个元素是1,[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]的每两行的内积为[tex=0.643x1.0]7dwHQGHL24uGORI8NryViw==[/tex]。令[tex=3.643x1.143]zTJJQSAZKEKhr9Z3oeus2t7/miq+VwoOLnInLxR8Q/I=[/tex]。证明:[tex=4.571x1.143]dbeNM4cufkVPwDzEPpayyQ==[/tex],其中[tex=0.5x1.0]ycRjqHa76IDpEZtluYQxdQ==[/tex]是[tex=0.5x0.786]GWrvJtODhYOBa2bpkSPSFQ==[/tex]级单位矩阵,[tex=0.571x1.0]qmbwF4Pp2sLBvOFTeKQ/mA==[/tex]是元素全为1 的[tex=0.5x0.786]GWrvJtODhYOBa2bpkSPSFQ==[/tex]级矩阵;
- 由非空集合X的所有子集构成的集合称为X的幂集,记作[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(1)设X={a,b,c},求[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(2)设X是由n个元素组成的有限集,证明[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex]中含有[tex=1.0x1.0]j//x0/Z+ltpf5R8ThFOpMA==[/tex]个元素.
- 设[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]为幺半群,[tex=0.5x0.786]WKYr2kz69xrVCyPvbyVG1w==[/tex]为其幺元,[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]的元素[tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex]称为可逆的,如果[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]有中元素[tex=1.5x1.214]9nbjw0OWRIrhh/buGvuWWw==[/tex]使得[tex=6.0x1.214]bMnokfgCU4shksHULCctqFaGd/RjhRJ2hiDoz1ps3wQ=[/tex],试证下面命题:[tex=1.0x1.0]/4LSvKfNeQWJ+IvWbbbjdA==[/tex]中所有可逆元素构成一群。
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。