• 2022-10-27
    求曲线的曲率半径: 抛物线 [tex=6.429x1.5]Ln8Eetv5MPz3ZWb1EU9q4W39hVx4TPInPgsHyTojUPE=[/tex].
  • [tex=7.5x2.714]3SARIqQcR9i5GuLZVJ+P2xUTEfRHZp5l6ThKwTV4bxtg8sSKvGa9OXxJZKYGWZCPfQ4TJjm1thBBYXSgRBDPuRT6XnSzBMGNnRvJcD8Xtec=[/tex], 于是 [tex=19.286x5.214]aCftHd1WzdaGeGqYqnN3rgkMx5E5YuGbR7o0ulXvBCHr3BiYQEXp2Ox/2KdYU8fwrSTvqcuhxu7P3QzsuVnDTwB+ejr9k5S+YFKWp8wGRuukWmRpAlfCwcALt7oCdT41zHrt2R5lv+YdE4GPzon5gS0aX8vpi/KAo2C3iYzFEpbYCYNzSpqWyPUF/ZgooWe618g1M4QzAKjcP+nctUXe6mx5Tn6SaSaaDB954Pito3E4fSm0WoaNtPvmPf5OP0PYHCHZxyp9zsoiI1zHWuHyHtHWMq3q20qCy9a1ogOGFTxdUbFBSKeSdKeEyWla93XWV0KnomeD4GGHSZIII2i9SQ==[/tex]

    内容

    • 0

      求抛物线 [tex=3.571x1.429]FsdbO/anc2tEhhllnrp/TA==[/tex]在顶点处的曲率和曲率半径.

    • 1

      曲线 [tex=8.5x1.357]SnnTbGpEXX+TW9JbhScjFA3EPJpjA+frhvrU9Mdcf6o=[/tex] 上哪一点处的曲率半径最小?求该曲率半径.

    • 2

      求双曲线[tex=2.357x1.214]Qq3OihJ8uPYsh70Bj2qd/Q==[/tex]在点[tex=3.214x1.357]WCAne3pKKDZm0fzvC3vUKQ==[/tex]的曲率半径和曲率中心:

    • 3

      求曲线[tex=4.143x1.429]pIWh6A1cn7l8Pp992ZRnEw==[/tex]的曲率以及在点[tex=2.286x1.357]Q31zUTZmPwwHO8bSBLtlYA==[/tex]的曲率半径.

    • 4

      求曲线[tex=5.214x1.357]mGICNCTq9gKOmSACbM0Xo6OCCcgexXOtYgAQ9NCWcgw=[/tex]在点[tex=2.286x1.357]Vc2pH4ypHndnllKqCpRn1g==[/tex]处的曲率及曲率半径.