举一反三
- 设[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]维向量空间[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个子空间,且 [tex=6.571x1.071]ZyqBa4JfWRPKusGwA3PAKqa8sjPrakad+dZGuQBTVus=[/tex].证明:[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]在[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]中有不止一个余子空间。
- 设 [tex=0.714x1.0]DFsH+JikwCTTlf0uyREzcg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 的线性映射. 证明: [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 在 [tex=0.714x1.0]DFsH+JikwCTTlf0uyREzcg==[/tex] 下的象是 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 的子空间.
- 设[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]是一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]维欧氏空间,证明:(i) 如果[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个子空间,那么 [tex=5.071x1.786]XY56GNRACVe6b2qd75bdLbEoOuqFoEbnmfTH9irME46lJ6iwlS1YWvk4vDNGYHBI[/tex].(ii) 如果[tex=1.357x1.214]GKMenh0m+y3HeiRY6A5A1w==[/tex],[tex=1.357x1.214]ztgeeoEuax7xCxL39pAmeA==[/tex] 都是[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的子空间,且[tex=3.929x1.214]mpMQ4Ru5iSHdEe8yWA+LnWVXOqkUqWcmSai3+gNB1u8=[/tex],那么 [tex=4.714x1.5]mrXs+eTyKg7VSoADvWalB+kQwoBZHeA+tzspi3E5EsvhWlx5xmUKG2weRdhKfJai[/tex]。(iii) 如果[tex=1.357x1.214]GKMenh0m+y3HeiRY6A5A1w==[/tex],[tex=1.357x1.214]ztgeeoEuax7xCxL39pAmeA==[/tex]都是[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的子空间,那么 [tex=10.5x2.0]Ld8gFueB3cMfdhC3+TJi4YFbblYbGe5K+i0mxbGikXnY/TVGGjA38UTtHqpIwitd1OT/xbMJzLN5uSQyv2lyPVKL0T1K+Y7QTu2lcwERL2M=[/tex]。
- 令[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是数域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上向量空间[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一些线性变换所成的集合。[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个子空间[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]如果在[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]中每一线性变换之下不变,那么就说 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的一个不变子空间。说[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是不可约的,如果[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]在[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]中没有非平凡的不变子空间。设[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]不可约,而[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]是[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个线性变换,它与[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]中每一线性变换可交换。证明,[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]或者是零变换,或者是可逆变换。 [ 提示 : 令 [tex=5.0x1.357]o2+7Gdi3IvIUF7x5ByZZytJ/TK5JsUQ7dq1ESJYAz0s=[/tex],证明[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的一个不变子空间。
- 设 [tex=0.714x1.0]DFsH+JikwCTTlf0uyREzcg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 的线性映射. 证明: [tex=0.714x1.0]DFsH+JikwCTTlf0uyREzcg==[/tex] 的核[p=align:center][tex=10.929x1.357]79Wd/JsaQKi3RBB3vwr83++T1RL7xHRl7h6/jYuyZNiKMy7xkr4ORGAMG33OkkToJExhkKLj0aUodV2n06JAE4PzxkAVaRTbEfGx9kYZZBg=[/tex]是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的子空间.
内容
- 0
设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的一个线性空间, [tex=2.071x1.214]7bSiFAc8MqSuaEcV2mpUyA==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的两个子空间, 且 [tex=4.071x1.214]kZydlf2V+tCUJpeZGXxcOQ==[/tex] 用 [tex=1.0x1.214]8mUw+AcJ35G5qKSnNmYGtA==[/tex] 表示平行于 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex] 在 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 上的投影. 证明 : [tex=9.357x1.214]o0GWEfzq5TDkepkwDKjyN+LfAfHd2uiPCGxYXa+d+hCBKZWjtWTqv+52vhmAFssfZ9h1FnCIoCAOyS2Do/g/jzbXynXUjmMmBOccPFkG+cU=[/tex]
- 1
设[tex=1.357x1.214]GKMenh0m+y3HeiRY6A5A1w==[/tex]、 [tex=1.357x1.214]ztgeeoEuax7xCxL39pAmeA==[/tex]是线性空间[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的两个子空间,证明[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的非空子集[tex=14.714x1.357]6nL/qxf68KXVUUmO+qjCaQ++Rd7t9NGfL/E2tCPdebVS+1nURGQlOM3epqeH1gyqoTSbH3+4VFLYsAm/wbwy/T1GqfTi2wyPemF64CYgODEXZAZ2cpI0D9se394laCRN[/tex]构成[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的子空间,这个子空间叫做[tex=1.357x1.214]GKMenh0m+y3HeiRY6A5A1w==[/tex]与[tex=1.357x1.214]ztgeeoEuax7xCxL39pAmeA==[/tex]的和子空间,记做[tex=3.857x1.214]1CZPLLWNxdeXS0vggfzNLA==[/tex]。
- 2
设[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]是一个向量空间,且[tex=3.429x1.357]z5i0UnrkSFEMYRY3fz3n5A==[/tex]。证明:[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]不可能表成它的两个真子空间的并集。
- 3
设Y是拓扑空间X的一个子空间,[tex=2.5x1.286]eE5MadPLJiAKqfDF0T7eGg==[/tex],证明:如果L是X的一个子基,则[tex=1.571x1.286]Kzx1vlQmylEt2nofDvFV/A==[/tex]是Y的一个子基。
- 4
设 [tex=2.571x1.214]KV1JYLtWo7PgXKV96f5fCg==[/tex] 是域 [tex=2.5x1.214]kigtu05vD/ZkLtOPJs7q7u0YEIuaSx4BVWI/2dSy16g=[/tex] 上的向量空间. 证明: [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 可以表为 3 个真子空间的并.