举一反三
- 写出由下列条件确定的曲线所满足的微分方程:(1) 曲线在点 [tex=2.286x1.357]Vc2pH4ypHndnllKqCpRn1g==[/tex] 处的切线的斜率等于该点的横坐标的平方;(2) 曲线在点 [tex=2.929x1.357]25jAdQ4EVKhlk22U111yAg==[/tex]处的法线与 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴的交点为 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex], 且线段 [tex=1.5x1.214]Yd1omjzy35C4LVET9VQTmw==[/tex]被 轴平分;(3) 曲线在点[tex=3.286x1.357]Muwjr4G+q7cJWSQhk4GPHA==[/tex]处的切线与[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴,[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴的交点依次为[tex=0.643x1.0]WUJ/JHItsc3Bqx1WYNJcrg==[/tex]与 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex], 线段 [tex=1.5x1.214]Yd1omjzy35C4LVET9VQTmw==[/tex]被点 [tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex] 平分,且曲线通过点( 3,1 ).
- 写出由下列条件确定的曲线所满足的微分方程:曲线上点 [tex=2.786x1.357]1/KsZEmwrrjE/b1swbX8JA==[/tex] 处的切线与 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴的交点为 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex], 线段 [tex=1.5x1.214]Yd1omjzy35C4LVET9VQTmw==[/tex] 的长度为 [tex=0.5x1.0]r0gpD7XCpZsfwi44gt1cgA==[/tex], 且曲线通过点 [tex=2.286x1.357]aSUWpQPXO/S4MIevdZvOIA==[/tex].[br][/br]
- 已知曲线上点[tex=2.929x1.357]25jAdQ4EVKhlk22U111yAg==[/tex]处的法线与[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴的交点为[tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex],且线段[tex=1.5x1.214]Yd1omjzy35C4LVET9VQTmw==[/tex]被[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴平分,求该曲线所满足的微分方程.
- 求下列曲线的方程:曲线上任意点 [tex=2.929x1.357]25jAdQ4EVKhlk22U111yAg==[/tex] 处到原点的距离等于点 [tex=0.643x1.0]WUJ/JHItsc3Bqx1WYNJcrg==[/tex] 和点 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex] 之间的距离,其中[tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex] 点是曲线上过点 [tex=0.643x1.0]WUJ/JHItsc3Bqx1WYNJcrg==[/tex] 的切线与[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴的交点.
- 写出由下列条件确定的曲线所满足的微分方程.曲线在点[tex=3.286x1.357]Muwjr4G+q7cJWSQhk4GPHA==[/tex]处的切线与[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴、[tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex]轴的交点分别为[tex=1.714x1.214]6Ou6FtDnwa1h3vWJmYOf+w==[/tex], 线段[tex=1.5x1.214]Yd1omjzy35C4LVET9VQTmw==[/tex]被点 [tex=1.0x1.0]0KCelhZna0R9EGhYF1VZHA==[/tex]平分,且曲线通过点(3,1).
内容
- 0
写出由下列条件确定的曲线所满足的微分方程 : 曲线上点 [tex=3.0x1.286]xeRn5SNOQos1mbbKIFL6ow==[/tex] 处的切线与 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴的交点为 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex], 线段 [tex=1.5x1.214]Yd1omjzy35C4LVET9VQTmw==[/tex] 的长度为 2 , 且曲线通过点 [tex=2.143x1.286]OlfosWifRDqCdMiG9ls9wA==[/tex] .
- 1
设曲线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex]上任一点 [tex=2.929x1.357]25jAdQ4EVKhlk22U111yAg==[/tex] 满足 [tex=4.357x1.214]LNDW8j7QgtFNvrPd5Ot3Cg==[/tex], 其中点 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 为曲线在点 [tex=1.0x1.0]h30MGzl4YMzpZdtHWcz0bA==[/tex]处的切线与 [tex=0.5x1.0]yBR4oiFoTexGaFalQ7m8kg==[/tex] 轴的交点,点 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex] 为点 [tex=0.643x1.0]WUJ/JHItsc3Bqx1WYNJcrg==[/tex] 在 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴上的投影点. 已知 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 过点 [tex=2.286x1.357]/a/vJiIC3Rr22SylXe49cg==[/tex]. 求曲线 [tex=0.714x1.0]Hl8mr56J4t0Ek5ZoqbFYYg==[/tex] 的方程.
- 2
曲线上点 [tex=2.786x1.357]25jAdQ4EVKhlk22U111yAg==[/tex] 处的法线与 [tex=0.571x1.286]XubEW9+1+hkJqH7jXe5MrA==[/tex] 轴的交点为 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex], 且线段 [tex=1.5x1.214]Yd1omjzy35C4LVET9VQTmw==[/tex] 被 [tex=0.571x1.286]Hz6y44ELFVLLNrLVhO3CQA==[/tex] 轴平分. 试写出由这些条件确定的曲线所满足的微分方程.
- 3
写出条件确定的曲线所满足的微分方程:曲线上点[tex=2.929x1.357]1/KsZEmwrrjE/b1swbX8JA==[/tex]处的法线与[tex=0.571x0.786]c5VsltFnl9nO0qB/vNKOWA==[/tex]轴的交点为[tex=0.857x1.214]ChdusW5rAupjge6v/DGHRA==[/tex],且线段[tex=1.5x1.214]Ig/HKDLaw2zBNzQyXE+OwA==[/tex]被[tex=0.5x1.0]iwXm0SwS+lfupyC0IyH8yQ==[/tex]平分。
- 4
写出由下列条件确定的曲线所满足的微分方程.曲线在点[tex=2.929x1.357]25jAdQ4EVKhlk22U111yAg==[/tex]处的法线与x轴的交点为Q, 且线段[tex=1.5x1.214]Yd1omjzy35C4LVET9VQTmw==[/tex]被y轴平分