帮我借个方程组y=-4/xy=-2x+b
举一反三
- 下列方程中( )是一阶线性微分方程。 A: \( 2{x^2}yy' = {y^2} + 1 \) B: \( xy' + {y \over x} - x = 0 \) C: \( \cos y + x\sin y { { dy} \over {dx}} = 0 \) D: \( y'' + xy' = 4{x^2} + 1 \)
- 分解因式()x()3()y()-()2()x()2()y()2()+()xy()3()正确的是A.()xy()(()x()+()y())()2()B.()xy()(()x()2()﹣()2()xy()+()y()2())()C.()xy()(()x()2()+2()xy()﹣()y()2())()D.()xy()(()x()﹣()y())()2
- 下列微分方程中,( )是齐次方程。 A: \( xy' = y(\ln y - \ln x) \) B: \( xy' + {y \over x} - x = 0 \) C: \( y' + {y \over x} = {1 \over { { x^2}}} \) D: \( y - y' = 1 + xy' \)
- 已知速度场u=x;v=-y (y≥0),则该流动的流线方程、迹线方程分别为 (第二章) A: xy=C 和 x^2+y^2=C ; B: xy=C 和 x^2-y^2=C ; C: xy=C 和 xy=C ; D: xy=C 和x/y=C ;
- 下列方程中( )是微分方程。 A: \( x{y^3} + 2{y^2} + {x^2}y = 0 \) B: \( {y^2} + xy - y = 0 \) C: \( x + {y^2} = 0 \) D: \( dy + ydx = 0 \)