将下列命题符号化。 不是所有的实数都能表示成分数. 设 F(x):x 实数, G(x):x 能表示成分数.
A: x(F(x)G(x))
B: x(F(x)G(x))
C: x(F(x)G(x))
D: x(F(x)G(x))
A: x(F(x)G(x))
B: x(F(x)G(x))
C: x(F(x)G(x))
D: x(F(x)G(x))
举一反三
- 【单选题】令F(x):x是有理数,G(x):x是实数。将命题“所有的有理数都是实数,但有的有实数不是有理数”符号化为 () A. " x(F(x)∧G(x))∧ $ x(G(x) ® Ø F(x)) B. " x(F(x) ® G(x))∧ $ x(G(x)∧ Ø F(x)) C. " x(F(x)∧G(x))∧ $ x(G(x)∧ Ø F(x)) D. " x(F(x) ® G(x))∧ $ x(G(x) ® Ø F(x))
- 设F(x):x具有性质F,G(x):x具有性质G,则命题“对所有的x而言,若x具有性质F,则x就有性质G”符号化形式为 A: ∃x(F(x)→G(x)) B: ∃x(F(x)∧G(x)) C: ∀x(F(x)→G(x)) D: ∀x(F(x)∧G(x))
- 有命题如下:任意实数x,总存在实数y,使得y[x成立。设:<br]F(x):x是实数[br][/br]G(x, y):x [ y<br]对该命题正确符号化的是 A: "x"y(F(x) ÙF(y) ®G(y,x)) B: "x$y(F(x) ÙF(y) ®G(y,x)) C: "x (F(x) Ù$y(F(y) ®G(y,x))) D: "x$y (F(x) ® (F(y) ÙG(y,x)))
- 设F(x):x为有理数,G(x):x为自然数,命题“有理数不全是自然数”的符号化形式为 A: ┐∀x(F(x)®G(x)) B: ∃x(F(x)Ù┐G(x)) C: ∃x(F(x)®G(x)) D: ∀x(F(x)ÙG(x))
- 设谓词F(x)表示x<3,G(x)表示x是素数,则“存在小于3的素数”符号化为 A: "x(F(x) ∧ G(x)) B: $x(F(x) ∧ G(x)) C: $x(F(x) →G(x)) D: "x(F(x) → G(x))